squad_qa_baseline_v5_full_meta-llama_Llama-2-7b-hf_3e-5_lora
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.4997
- Accuracy: 0.5972
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 50.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.99 | 74 | 1.7199 | 0.6196 |
2.2232 | 1.99 | 149 | 1.6485 | 0.6252 |
1.6589 | 3.0 | 224 | 1.6497 | 0.6251 |
1.6589 | 4.0 | 299 | 1.6766 | 0.6224 |
1.5556 | 4.99 | 373 | 1.7691 | 0.6181 |
1.3483 | 5.99 | 448 | 1.8441 | 0.6152 |
1.0767 | 7.0 | 523 | 1.9540 | 0.6127 |
1.0767 | 8.0 | 598 | 2.0592 | 0.6098 |
0.8642 | 8.99 | 672 | 2.2436 | 0.6051 |
0.6478 | 9.99 | 747 | 2.4147 | 0.6026 |
0.5323 | 11.0 | 822 | 2.4719 | 0.6018 |
0.5323 | 12.0 | 897 | 2.6090 | 0.5990 |
0.4539 | 12.99 | 971 | 2.6601 | 0.5999 |
0.3998 | 13.99 | 1046 | 2.7315 | 0.5994 |
0.3835 | 15.0 | 1121 | 2.8304 | 0.6006 |
0.3835 | 16.0 | 1196 | 2.8454 | 0.5976 |
0.3694 | 16.99 | 1270 | 2.8839 | 0.5994 |
0.3527 | 17.99 | 1345 | 2.9917 | 0.5971 |
0.3529 | 19.0 | 1420 | 2.9956 | 0.5975 |
0.3529 | 20.0 | 1495 | 2.9528 | 0.5979 |
0.3479 | 20.99 | 1569 | 2.9979 | 0.5989 |
0.3385 | 21.99 | 1644 | 2.9651 | 0.5971 |
0.3405 | 23.0 | 1719 | 3.0648 | 0.5974 |
0.3405 | 24.0 | 1794 | 3.0753 | 0.598 |
0.3357 | 24.99 | 1868 | 3.1164 | 0.5969 |
0.3284 | 25.99 | 1943 | 3.0272 | 0.5956 |
0.3349 | 27.0 | 2018 | 3.1836 | 0.5964 |
0.3349 | 28.0 | 2093 | 3.1658 | 0.5965 |
0.3297 | 28.99 | 2167 | 3.1892 | 0.596 |
0.326 | 29.99 | 2242 | 3.1197 | 0.5973 |
0.3284 | 31.0 | 2317 | 3.2153 | 0.5951 |
0.3284 | 32.0 | 2392 | 3.2405 | 0.5967 |
0.3262 | 32.99 | 2466 | 3.2837 | 0.5941 |
0.3225 | 33.99 | 2541 | 3.2351 | 0.5967 |
0.3219 | 35.0 | 2616 | 3.1901 | 0.5972 |
0.3219 | 36.0 | 2691 | 3.2920 | 0.5972 |
0.3209 | 36.99 | 2765 | 3.3388 | 0.5965 |
0.3183 | 37.99 | 2840 | 3.3174 | 0.5964 |
0.321 | 39.0 | 2915 | 3.2232 | 0.5975 |
0.321 | 40.0 | 2990 | 3.3365 | 0.5956 |
0.3183 | 40.99 | 3064 | 3.3483 | 0.5967 |
0.3153 | 41.99 | 3139 | 3.2347 | 0.5972 |
0.3196 | 43.0 | 3214 | 3.3181 | 0.5982 |
0.3196 | 44.0 | 3289 | 3.3559 | 0.5965 |
0.3154 | 44.99 | 3363 | 3.3142 | 0.5975 |
0.3137 | 45.99 | 3438 | 3.3402 | 0.5967 |
0.3153 | 47.0 | 3513 | 3.3566 | 0.5966 |
0.3153 | 48.0 | 3588 | 3.3560 | 0.5966 |
0.3149 | 48.99 | 3662 | 3.3837 | 0.5966 |
0.3124 | 49.5 | 3700 | 3.4997 | 0.5972 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for tyzhu/squad_qa_baseline_v5_full_meta-llama_Llama-2-7b-hf_3e-5_lora
Base model
meta-llama/Llama-2-7b-hf