lmind_nq_train6000_eval6489_v1_recite_qa_v3_meta-llama_Llama-2-7b-hf_5e-5_lora2
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3 dataset. It achieves the following results on the evaluation set:
- Loss: 0.5108
- Accuracy: 0.7842
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.3072 | 1.0 | 529 | 1.1908 | 0.6659 |
1.2561 | 2.0 | 1058 | 1.1422 | 0.6728 |
1.1672 | 3.0 | 1587 | 1.0947 | 0.6793 |
1.0827 | 4.0 | 2116 | 1.0515 | 0.6857 |
0.9944 | 5.0 | 2645 | 1.0024 | 0.6940 |
0.8926 | 6.0 | 3174 | 0.9521 | 0.7009 |
0.8135 | 7.0 | 3703 | 0.8976 | 0.7097 |
0.7146 | 8.0 | 4232 | 0.8515 | 0.7171 |
0.6265 | 9.0 | 4761 | 0.8022 | 0.7259 |
0.5522 | 10.0 | 5290 | 0.7628 | 0.7327 |
0.4864 | 11.0 | 5819 | 0.7115 | 0.7419 |
0.4265 | 12.0 | 6348 | 0.6697 | 0.7488 |
0.3671 | 13.0 | 6877 | 0.6299 | 0.7560 |
0.331 | 14.0 | 7406 | 0.6025 | 0.7616 |
0.2923 | 15.0 | 7935 | 0.5802 | 0.7667 |
0.2525 | 16.0 | 8464 | 0.5576 | 0.7711 |
0.2353 | 17.0 | 8993 | 0.5441 | 0.7753 |
0.2121 | 18.0 | 9522 | 0.5286 | 0.7796 |
0.1936 | 19.0 | 10051 | 0.5184 | 0.7825 |
0.1784 | 20.0 | 10580 | 0.5108 | 0.7842 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3_meta-llama_Llama-2-7b-hf_5e-5_lora2
Base model
meta-llama/Llama-2-7b-hfDataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3_meta-llama_Llama-2-7b-hf_5e-5_lora2
Evaluation results
- Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3self-reported0.784