lmind_nq_train6000_eval6489_v1_qa_3e-4_lora2

This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the tyzhu/lmind_nq_train6000_eval6489_v1_qa dataset. It achieves the following results on the evaluation set:

  • Loss: 3.0231
  • Accuracy: 0.4910

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 50.0

Training results

Training Loss Epoch Step Accuracy Validation Loss
1.4433 1.0 187 0.6166 1.2626
1.0761 2.0 375 0.6159 1.2960
0.7909 3.0 562 0.6094 1.4208
0.6117 4.0 750 0.6065 1.5099
0.535 5.0 937 0.6073 1.6384
0.4917 6.0 1125 0.6064 1.6918
0.4746 7.0 1312 0.6048 1.7547
0.463 8.0 1500 0.6057 1.7708
0.4307 9.0 1687 0.6051 1.7773
0.4323 10.0 1875 0.5997 1.7927
0.4301 11.0 2062 0.6046 1.8201
0.4331 12.0 2250 0.6051 1.8903
0.4338 13.0 2437 0.6035 1.8489
0.4331 14.0 2625 0.6024 1.9058
0.4362 15.0 2812 0.6004 1.8960
0.4371 16.0 3000 0.6012 1.9080
0.4153 17.0 3187 0.6019 1.9090
0.4151 18.0 3375 0.6004 1.9131
0.426 19.0 3562 0.5750 2.0016
0.4475 20.0 3750 0.6010 1.8873
0.4325 21.0 3937 0.6009 1.8351
0.4542 22.0 4125 0.5990 1.8659
0.5662 23.0 4312 0.5964 1.8427
0.4365 24.0 4500 0.5993 1.8093
0.4153 25.0 4687 0.6022 1.8418
0.4099 26.0 4875 0.6002 1.9742
0.4101 27.0 5062 0.5987 1.9682
0.4122 28.0 5250 0.5991 1.9906
0.4116 29.0 5437 0.5990 1.9428
0.4158 30.0 5625 0.5987 1.9262
0.4215 31.0 5812 0.5961 1.9735
0.4249 32.0 6000 0.5966 1.9393
0.4049 33.0 6187 0.5956 2.0083
0.4077 34.0 6375 0.5962 1.9472
0.4078 35.0 6562 0.5945 1.9796
2.7734 36.0 6750 0.3345 5.2338
4.2638 37.0 6937 0.4333 3.7370
2.5456 38.0 7125 0.3550 4.5389
5.3244 39.0 7312 0.4132 4.0601
3.9209 40.0 7500 0.4102 4.0942
3.4851 41.0 7687 0.5124 2.5265
1.3821 42.0 7875 0.5595 2.0728
0.7913 43.0 8062 0.5667 2.0104
0.6674 44.0 8250 0.5754 2.0220
0.6202 45.0 8437 0.5837 2.0235
0.4798 46.0 8625 0.5816 2.0670
0.4663 47.0 8812 0.5756 2.0748
4.502 48.0 9000 0.4479 3.4224
2.7893 49.0 9187 0.5287 2.3122
1.8211 49.87 9350 0.4910 3.0231

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.14.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_qa_3e-4_lora2

Finetuned
(622)
this model

Dataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_qa_3e-4_lora2

Evaluation results

  • Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_qa
    self-reported
    0.491