Back to all models
question-answering mask_token: [MASK]
Query this model
🔥 This model is currently loaded and running on the Inference API. ⚠️ This model could not be loaded by the inference API. ⚠️ This model can be loaded on the Inference API on-demand.
JSON Output
API endpoint
								$ curl -X POST \
Share Copied link to clipboard

Monthly model downloads

twmkn9/distilbert-base-uncased-squad2 twmkn9/distilbert-base-uncased-squad2
last 30 days



Contributed by

twmkn9 Travis McGuire
4 models

How to use this model directly from the 🤗/transformers library:

Copy to clipboard
from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("twmkn9/distilbert-base-uncased-squad2") model = AutoModelForQuestionAnswering.from_pretrained("twmkn9/distilbert-base-uncased-squad2")

This model is Distilbert base uncased trained on SQuAD v2 as:

export SQUAD_DIR=../../squad2
    --model_type distilbert 
    --model_name_or_path distilbert-base-uncased
    --save_steps 100000 
    --train_file $SQUAD_DIR/train-v2.0.json 
    --predict_file $SQUAD_DIR/dev-v2.0.json 
    --per_gpu_train_batch_size 8 
    --num_train_epochs 3 
    --learning_rate 3e-5 
    --max_seq_length 384 
    --doc_stride 128 
    --output_dir ./tmp/distilbert_fine_tuned/

Performance on a dev subset is close to the original paper:

    'exact': 64.88976637051661, 
    'f1': 68.1776176526635, 
    'total': 6078, 
    'HasAns_exact': 69.7594501718213, 
    'HasAns_f1': 76.62665295288285, 
    'HasAns_total': 2910, 
    'NoAns_exact': 60.416666666666664, 
    'NoAns_f1': 60.416666666666664, 
    'NoAns_total': 3168, 
    'best_exact': 64.88976637051661, 
    'best_exact_thresh': 0.0, 
    'best_f1': 68.17761765266337, 
    'best_f1_thresh': 0.0

We are hopeful this might save you time, energy, and compute. Cheers!