This model is BERT base uncased trained on SQuAD v2 as:

export SQUAD_DIR=../../squad2
python3 run_squad.py 
    --model_type bert 
    --model_name_or_path bert-base-uncased 
    --do_train 
    --do_eval 
    --overwrite_cache 
    --do_lower_case 
    --version_2_with_negative 
    --save_steps 100000 
    --train_file $SQUAD_DIR/train-v2.0.json 
    --predict_file $SQUAD_DIR/dev-v2.0.json 
    --per_gpu_train_batch_size 8 
    --num_train_epochs 3 
    --learning_rate 3e-5 
    --max_seq_length 384 
    --doc_stride 128 
    --output_dir ./tmp/bert_fine_tuned/

Performance on a dev subset is close to the original paper:

Results: 
{
    'exact': 72.35932872655479, 
    'f1': 75.75355132564763, 
    'total': 6078, 
    'HasAns_exact': 74.29553264604812, 
    'HasAns_f1': 81.38490892002987, 
    'HasAns_total': 2910, 
    'NoAns_exact': 70.58080808080808, 
    'NoAns_f1': 70.58080808080808, 
    'NoAns_total': 3168, 
    'best_exact': 72.35932872655479, 
    'best_exact_thresh': 0.0, 
    'best_f1': 75.75355132564766, 
    'best_f1_thresh': 0.0
}

We are hopeful this might save you time, energy, and compute. Cheers!

Downloads last month
90,124
Hosted inference API
Question Answering
Examples
Examples
This model can be loaded on the Inference API on-demand.