File size: 2,269 Bytes
a7a20ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cf435f
 
 
a7a20ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5480f7
48ee8a2
c0f05da
defcc56
126bebc
3711359
bce9aaa
b0ed9b0
8cf435f
a7a20ef
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
license: mit
base_model: w11wo/indonesian-roberta-base-posp-tagger
tags:
- generated_from_keras_callback
model-index:
- name: tunarebus/indonesian-roberta-base-posp-tagger-finetuned-tweet_pemilu2024
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# tunarebus/indonesian-roberta-base-posp-tagger-finetuned-tweet_pemilu2024

This model is a fine-tuned version of [w11wo/indonesian-roberta-base-posp-tagger](https://huggingface.co/w11wo/indonesian-roberta-base-posp-tagger) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 6.8798
- Validation Loss: 6.6169
- Epoch: 8

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -969, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 11.7870    | 11.4348         | 0     |
| 10.8383    | 10.1366         | 1     |
| 9.6098     | 9.0621          | 2     |
| 8.7602     | 8.2954          | 3     |
| 8.0949     | 7.7276          | 4     |
| 7.6334     | 7.2756          | 5     |
| 7.3192     | 7.0363          | 6     |
| 7.1297     | 6.8447          | 7     |
| 6.8798     | 6.6169          | 8     |


### Framework versions

- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.16.0
- Tokenizers 0.15.0