Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: NousResearch/Yarn-Llama-2-7b-64k
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 396327bda852888c_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/396327bda852888c_train_data.json
  type:
    field_instruction: title
    field_output: abstract
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 5
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: false
group_by_length: false
hub_model_id: tuantmdev/ef4bc250-47fb-42e2-b3cb-78e33e14928a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 2e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 40
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/396327bda852888c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_strategy: best
saves_per_epoch: 5
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: a16fc738-6a5a-4a95-a014-1684ce5ab17a
wandb_project: Gradients-On-Demand
wandb_run: unknown
wandb_runid: a16fc738-6a5a-4a95-a014-1684ce5ab17a
warmup_steps: 80
weight_decay: 0.01
xformers_attention: null

ef4bc250-47fb-42e2-b3cb-78e33e14928a

This model is a fine-tuned version of NousResearch/Yarn-Llama-2-7b-64k on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7235

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 80
  • training_steps: 200

Training results

Training Loss Epoch Step Validation Loss
No log 0.0001 1 2.1100
33.3493 0.0044 40 2.0666
30.9777 0.0088 80 1.8364
28.7871 0.0132 120 1.7560
28.0053 0.0175 160 1.7281
27.6745 0.0219 200 1.7235

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
10
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for tuantmdev/ef4bc250-47fb-42e2-b3cb-78e33e14928a

Adapter
(265)
this model