tsunayoshi21's picture
Subiendo mi modelo entrenado finetuneado desde Trisert/tinyllama-alpaca
fe516e4 verified
|
raw
history blame
3.73 kB
metadata
base_model: Trisert/tinyllama-alpaca
library_name: peft
license: apache-2.0
tags:
  - generated_from_trainer
model-index:
  - name: outputs/qlora-out-context
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: qlora
base_model: Trisert/tinyllama-alpaca
bf16: false
dataset_prepared_path: null
datasets:
- ds_tipe: json
  path: /content/pubmed_continual_pretraning_dataset.jsonl
  type: completion
debug: null
deepspeed: null
early_stopping_patience: null
eval_sample_packing: false
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules: null
lr_scheduler: cosine
micro_batch_size: 8
model_type: AutoModelForCausalLM
num_epochs: 4
optimizer: paged_adamw_32bit
output_dir: ./outputs/qlora-out-context
pad_to_sequence_len: false
resume_from_checkpoint: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 4096
special_tokens: null
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
val_set_size: 0.05
wandb_entity: null
wandb_log_model: null
wandb_name: null
wandb_project: null
wandb_watch: null
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

outputs/qlora-out-context

This model is a fine-tuned version of Trisert/tinyllama-alpaca on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8030

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
2.6905 0.0336 1 2.7292
2.4725 0.2689 8 2.3972
1.9891 0.5378 16 2.0718
1.8345 0.8067 24 1.9329
1.8088 1.0756 32 1.8730
1.8183 1.3445 40 1.8430
1.8004 1.6134 48 1.8263
1.7674 1.8824 56 1.8167
1.7164 2.1513 64 1.8104
1.6525 2.4202 72 1.8069
1.7917 2.6891 80 1.8053
1.8022 2.9580 88 1.8037
1.6917 3.2269 96 1.8032
1.765 3.4958 104 1.8030
1.6784 3.7647 112 1.8030

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.1
  • Pytorch 2.1.2+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1