File size: 5,779 Bytes
b9bc932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
base_model: tsavage68/chat_600STEPS_1e8rate_SFT
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: chat_1000_STEPS_05beta_1e7rate_CDPOSFT
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# chat_1000_STEPS_05beta_1e7rate_CDPOSFT

This model is a fine-tuned version of [tsavage68/chat_600STEPS_1e8rate_SFT](https://huggingface.co/tsavage68/chat_600STEPS_1e8rate_SFT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6899
- Rewards/chosen: -0.0048
- Rewards/rejected: -0.0138
- Rewards/accuracies: 0.4527
- Rewards/margins: 0.0090
- Logps/rejected: -18.8295
- Logps/chosen: -16.7641
- Logits/rejected: -0.5988
- Logits/chosen: -0.5987

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 4
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6929        | 0.0977 | 50   | 0.6947          | -0.0000        | 0.0016           | 0.4066             | -0.0016         | -18.7989       | -16.7547     | -0.5985         | -0.5983       |
| 0.694         | 0.1953 | 100  | 0.6903          | 0.0030         | -0.0047          | 0.4527             | 0.0076          | -18.8113       | -16.7487     | -0.5976         | -0.5975       |
| 0.6922        | 0.2930 | 150  | 0.6941          | -0.0056        | -0.0053          | 0.4044             | -0.0003         | -18.8127       | -16.7659     | -0.5978         | -0.5977       |
| 0.7012        | 0.3906 | 200  | 0.6957          | -0.0099        | -0.0065          | 0.4132             | -0.0034         | -18.8151       | -16.7744     | -0.5982         | -0.5980       |
| 0.6992        | 0.4883 | 250  | 0.6932          | -0.0081        | -0.0099          | 0.4484             | 0.0017          | -18.8217       | -16.7709     | -0.5975         | -0.5974       |
| 0.6872        | 0.5859 | 300  | 0.6918          | -0.0096        | -0.0144          | 0.4440             | 0.0048          | -18.8309       | -16.7738     | -0.5990         | -0.5989       |
| 0.6875        | 0.6836 | 350  | 0.6894          | -0.0116        | -0.0209          | 0.4484             | 0.0093          | -18.8438       | -16.7778     | -0.5985         | -0.5984       |
| 0.6918        | 0.7812 | 400  | 0.6878          | -0.0070        | -0.0200          | 0.4462             | 0.0129          | -18.8419       | -16.7687     | -0.5987         | -0.5985       |
| 0.6868        | 0.8789 | 450  | 0.6897          | -0.0052        | -0.0141          | 0.4396             | 0.0089          | -18.8302       | -16.7651     | -0.5982         | -0.5981       |
| 0.6867        | 0.9766 | 500  | 0.6904          | -0.0080        | -0.0160          | 0.4176             | 0.0080          | -18.8339       | -16.7706     | -0.5988         | -0.5987       |
| 0.6744        | 1.0742 | 550  | 0.6883          | -0.0035        | -0.0157          | 0.4527             | 0.0123          | -18.8334       | -16.7616     | -0.5985         | -0.5984       |
| 0.6791        | 1.1719 | 600  | 0.6897          | -0.0033        | -0.0127          | 0.4484             | 0.0094          | -18.8275       | -16.7612     | -0.5988         | -0.5987       |
| 0.6793        | 1.2695 | 650  | 0.6887          | -0.0077        | -0.0191          | 0.4418             | 0.0114          | -18.8402       | -16.7700     | -0.5985         | -0.5983       |
| 0.6696        | 1.3672 | 700  | 0.6863          | -0.0015        | -0.0176          | 0.4527             | 0.0161          | -18.8372       | -16.7576     | -0.5988         | -0.5986       |
| 0.6689        | 1.4648 | 750  | 0.6873          | -0.0024        | -0.0167          | 0.4593             | 0.0143          | -18.8353       | -16.7594     | -0.5983         | -0.5982       |
| 0.6808        | 1.5625 | 800  | 0.6879          | -0.0050        | -0.0179          | 0.4637             | 0.0129          | -18.8378       | -16.7646     | -0.5992         | -0.5991       |
| 0.6718        | 1.6602 | 850  | 0.6902          | -0.0058        | -0.0139          | 0.4462             | 0.0082          | -18.8299       | -16.7662     | -0.5985         | -0.5984       |
| 0.678         | 1.7578 | 900  | 0.6872          | -0.0008        | -0.0151          | 0.4571             | 0.0144          | -18.8323       | -16.7562     | -0.5989         | -0.5988       |
| 0.6745        | 1.8555 | 950  | 0.6899          | -0.0048        | -0.0138          | 0.4527             | 0.0090          | -18.8295       | -16.7641     | -0.5988         | -0.5987       |
| 0.6759        | 1.9531 | 1000 | 0.6899          | -0.0048        | -0.0138          | 0.4527             | 0.0090          | -18.8295       | -16.7641     | -0.5988         | -0.5987       |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.0.0+cu117
- Datasets 2.19.1
- Tokenizers 0.19.1