File size: 5,829 Bytes
9c2895c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: llama3
base_model: tsavage68/Summary_L3_1000steps_1e7rate_SFT2
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: Summary_L3_1000steps_1e6rate_01beta_CSFTDPO
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Summary_L3_1000steps_1e6rate_01beta_CSFTDPO

This model is a fine-tuned version of [tsavage68/Summary_L3_1000steps_1e7rate_SFT2](https://huggingface.co/tsavage68/Summary_L3_1000steps_1e7rate_SFT2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5961
- Rewards/chosen: -0.0885
- Rewards/rejected: -2.0984
- Rewards/accuracies: 0.1400
- Rewards/margins: 2.0099
- Logps/rejected: -36.2478
- Logps/chosen: -10.2675
- Logits/rejected: -1.2445
- Logits/chosen: -1.2412

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.571         | 0.2004 | 50   | 0.5986          | 0.0271         | -0.6059          | 0.1400             | 0.6329          | -21.3224       | -9.1122      | -1.1153         | -1.1163       |
| 0.6585        | 0.4008 | 100  | 0.5962          | 0.0177         | -1.2883          | 0.1400             | 1.3060          | -28.1472       | -9.2058      | -1.1739         | -1.1725       |
| 0.6238        | 0.6012 | 150  | 0.5961          | -0.0262        | -1.7529          | 0.1400             | 1.7267          | -32.7924       | -9.6448      | -1.2119         | -1.2094       |
| 0.6065        | 0.8016 | 200  | 0.5961          | -0.0848        | -2.0675          | 0.1400             | 1.9828          | -35.9388       | -10.2303     | -1.2396         | -1.2364       |
| 0.6238        | 1.0020 | 250  | 0.5961          | -0.0864        | -2.0702          | 0.1400             | 1.9839          | -35.9662       | -10.2464     | -1.2401         | -1.2369       |
| 0.6238        | 1.2024 | 300  | 0.5961          | -0.0864        | -2.0688          | 0.1400             | 1.9824          | -35.9522       | -10.2471     | -1.2396         | -1.2364       |
| 0.6238        | 1.4028 | 350  | 0.5961          | -0.0866        | -2.0730          | 0.1400             | 1.9864          | -35.9935       | -10.2485     | -1.2409         | -1.2378       |
| 0.5718        | 1.6032 | 400  | 0.5961          | -0.0880        | -2.0816          | 0.1400             | 1.9937          | -36.0800       | -10.2625     | -1.2420         | -1.2388       |
| 0.5892        | 1.8036 | 450  | 0.5961          | -0.0869        | -2.0872          | 0.1400             | 2.0004          | -36.1360       | -10.2514     | -1.2428         | -1.2396       |
| 0.5718        | 2.0040 | 500  | 0.5961          | -0.0873        | -2.0879          | 0.1400             | 2.0006          | -36.1431       | -10.2557     | -1.2431         | -1.2399       |
| 0.5718        | 2.2044 | 550  | 0.5961          | -0.0872        | -2.0916          | 0.1400             | 2.0044          | -36.1798       | -10.2553     | -1.2434         | -1.2402       |
| 0.5545        | 2.4048 | 600  | 0.5961          | -0.0893        | -2.0984          | 0.1400             | 2.0091          | -36.2481       | -10.2761     | -1.2448         | -1.2416       |
| 0.5199        | 2.6052 | 650  | 0.5961          | -0.0881        | -2.0960          | 0.1400             | 2.0078          | -36.2235       | -10.2642     | -1.2437         | -1.2405       |
| 0.6238        | 2.8056 | 700  | 0.5961          | -0.0891        | -2.1004          | 0.1400             | 2.0113          | -36.2677       | -10.2740     | -1.2450         | -1.2417       |
| 0.6065        | 3.0060 | 750  | 0.5961          | -0.0879        | -2.0983          | 0.1400             | 2.0104          | -36.2469       | -10.2615     | -1.2456         | -1.2423       |
| 0.6412        | 3.2064 | 800  | 0.5961          | -0.0900        | -2.1003          | 0.1400             | 2.0103          | -36.2667       | -10.2828     | -1.2448         | -1.2416       |
| 0.6585        | 3.4068 | 850  | 0.5961          | -0.0875        | -2.0997          | 0.1400             | 2.0122          | -36.2604       | -10.2578     | -1.2456         | -1.2424       |
| 0.6238        | 3.6072 | 900  | 0.5961          | -0.0879        | -2.0992          | 0.1400             | 2.0114          | -36.2559       | -10.2613     | -1.2445         | -1.2413       |
| 0.5372        | 3.8076 | 950  | 0.5961          | -0.0884        | -2.0981          | 0.1400             | 2.0097          | -36.2444       | -10.2669     | -1.2444         | -1.2412       |
| 0.6238        | 4.0080 | 1000 | 0.5961          | -0.0885        | -2.0984          | 0.1400             | 2.0099          | -36.2478       | -10.2675     | -1.2445         | -1.2412       |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.0.0+cu117
- Datasets 2.20.0
- Tokenizers 0.19.1