File size: 3,600 Bytes
a40d8a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
---
license: apache-2.0
datasets:
- Crystalcareai/openhermes_200k_unfiltered
language:
- en
library_name: transformers
base_model: h2oai/h2o-danube2-1.8b-base
---
# h2o-danube2 with ChatML template
This is a [BAdam](https://arxiv.org/abs/2404.02827 "BAdam: A Memory Efficient Full Parameter Optimization Method for Large Language Models") and [LoRA+](https://arxiv.org/abs/2402.12354 "LoRA+: Efficient Low Rank Adaptation of Large Models") fine-tuned danube2 base model. It uses the ChatML template and was trained on the [openhermes-unfiltered](https://huggingface.co/datasets/Crystalcareai/openhermes_200k_unfiltered).
## Template
```jinja
<|im_start>user
{{instruction}}<|im_end|>
<|im_start>assistant
{{response}}<|im_end>
```
## BAdam
**System:** You are a helpful assistant.
```yaml
### model
model_name_or_path: danube2-base-chatml
### method
stage: sft
do_train: true
finetuning_type: full
use_badam: true
badam_switch_mode: ascending
badam_switch_interval: 50
badam_verbose: 1
badam_start_block: 10
seed: 720
### dataset
dataset: openhermes_unfiltered
template: ninja_chatml
cutoff_len: 8192
overwrite_cache: false
preprocessing_num_workers: 12
### output
output_dir: openhermes-chatml-badam
logging_steps: 5
save_steps: 1
save_strategy: epoch
plot_loss: true
overwrite_output_dir: false
### train
per_device_train_batch_size: 2
gradient_accumulation_steps: 8
learning_rate: 0.00001
num_train_epochs: 1
lr_scheduler_type: constant_with_warmup
warmup_ratio: 0.01
bf16: true
flash_attn: fa2
### eval
val_size: 0.01
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 2000
```
### BAdam Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 0.7971 | 0.1748 | 2000 | 0.7418 |
| 0.6815 | 0.3496 | 4000 | 0.7178 |
| 0.6593 | 0.5245 | 6000 | 0.7055 |
| 0.6923 | 0.6993 | 8000 | 0.6960 |
| 0.6942 | 0.8741 | 10000 | 0.6877 |
## QLoRA+
```yaml
### model
model_name_or_path: openhermes-chatml-badam
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
loraplus_lr_ratio: 16.0
lora_rank: 8
lora_alpha: 16
use_unsloth: true
quantization_bit: 4
upcast_layernorm: true
seed: 3141
### dataset
dataset: openhermes_unfiltered
template: hermes_chatml
cutoff_len: 8192
overwrite_cache: false
preprocessing_num_workers: 12
### output
output_dir: openhermes-chatml-badam/loraplus
logging_steps: 1
save_steps: 1
save_strategy: epoch
plot_loss: true
overwrite_output_dir: false
### train
per_device_train_batch_size: 4
gradient_accumulation_steps: 4
learning_rate: 0.0001
num_train_epochs: 1.0
lr_scheduler_type: cosine
warmup_ratio: 0.01
bf16: true
flash_attn: fa2
#neftune_noise_alpha: 5
### eval
val_size: 0.02
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 1000
```
### QLoRA+ Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 0.6523 | 0.0883 | 1000 | 0.7126 |
| 0.6398 | 0.1766 | 2000 | 0.7086 |
| 0.6865 | 0.2649 | 3000 | 0.7001 |
| 0.6714 | 0.3532 | 4000 | 0.6917 |
| 0.7213 | 0.4415 | 5000 | 0.6819 |
| 0.7764 | 0.5298 | 6000 | 0.6721 |
| 0.6931 | 0.6181 | 7000 | 0.6638 |
| 0.6632 | 0.7064 | 8000 | 0.6560 |
| 0.5966 | 0.7947 | 9000 | 0.6514 |
| 0.6339 | 0.8830 | 10000 | 0.6482 |
| 0.4987 | 0.9713 | 11000 | 0.6472 | |