File size: 13,774 Bytes
466ae8e
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb909a715a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb909a71630>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb909a716c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb909a71750>", "_build": "<function ActorCriticPolicy._build at 0x7fb909a717e0>", "forward": "<function ActorCriticPolicy.forward at 0x7fb909a71870>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb909a71900>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb909a71990>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb909a71a20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb909a71ab0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb909a71b40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb909a71bd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb909c13000>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 80608, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1708784434605633508, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1sUboPvxm8zPINur6dFzy2s4S9xQMEPQAAgD8AAIA/mvd6vdBQKD8CZVk8kW6GvheBDr2mgvU6AAAAAAAAAAAzMea8uFT2PWZhlT1eF0e+l46ZvOVgObwAAAAAAAAAAGZOWbyPxme6AbUxuvHuP7WLKjK50A5QOQAAgD8AAIA/zdqjPM7JnLx3eYM9M0pzvUNJ2T0qz6A+AACAPwAAgD+mkbI9/z0XP3UN/r2RAZG+HcT4vf6iDr0AAAAAAAAAAPOf973b9Qk/pnsNPv0vpL7NmZQ8AzUpPQAAAAAAAAAAs4XWPRS6ibpo6wQ5xO8zNDZ1fDvvqhe4AAAAAAAAgD/NjLC5w3Eeukt70rojOzW2OLyUOoqn9DkAAIA/AACAP2aqp7vPoA683vQUPV07Ez3ioYU96rzuvQAAgD8AAIA/k9tUPlFwCD+S2Uy+e3dnvsWPAzyLNW69AAAAAAAAAABN+Zy9UiWkP9ZxHr8SXeu++wABPb1ud70AAAAAAAAAAObuA774TSE/e99jvNxejL7XouW8nvspPQAAAAAAAAAAc17kPd0YGT5IPle+x0Z6vkmGeL24ftW7AAAAAAAAAACzBJq9N714P3p9vDydMYe+sWG8vK8HDz0AAAAAAAAAADN+tj3hrJi6LTpZutHLhLXNjz85SMp5OQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.934464, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGuin0K7ZnOMAWyUTeYDjAF0lEdAklfhFNL13HV9lChoBkdAYoLqzqrzXmgHTegDaAhHQJJX+3H7xd91fZQoaAZHQGL6pYs/Y8NoB03oA2gIR0CSV/yCFsYVdX2UKGgGR0Bj0/e+Eh7maAdN6ANoCEdAklf6X4TK1XV9lChoBkdAYyVzFuNxVGgHTegDaAhHQJJX+yprDZV1fZQoaAZHQGXZdrXUYsNoB03oA2gIR0CSV/XwLE1mdX2UKGgGR0BkL/3evZAZaAdN6ANoCEdAklf24mTkhnV9lChoBkdAbhFujRD1G2gHTUcDaAhHQJJrTzTWoWJ1fZQoaAZHQHAk9r433pRoB02BAWgIR0CScAot+TePdX2UKGgGR0Bh0o176YVqaAdN6ANoCEdAknFZEc81XXV9lChoBkdARsqmqHXVb2gHTQYBaAhHQJJyIxyn1nN1fZQoaAZHQGPtjD8+A3FoB03oA2gIR0CSck/FirksdX2UKGgGR0BCzhQFcIJJaAdNKwFoCEdAknO/oNd7fHV9lChoBkdAcQLLpiZv1mgHTXUBaAhHQJJ3L1vl2eR1fZQoaAZHQG03FR51Ng1oB00HAmgIR0CSfqKiwjdIdX2UKGgGR0Bq7ztw71ZlaAdN5QJoCEdAkoWMs+V1OnV9lChoBkdAawCl41P3z2gHTawDaAhHQJKHyHP/rB11fZQoaAZHQHH3uZ1FH8VoB02TAmgIR0CSiBxGUfPpdX2UKGgGR0BnvceCCjDbaAdN6ANoCEdAkokb3j+72HV9lChoBkdAcadYuCf6GmgHTVYCaAhHQJKJRORDCxh1fZQoaAZHQHHdQmJFb3ZoB03OAmgIR0CSifE1l5GCdX2UKGgGR0BvNzh5xBE8aAdN8wJoCEdAkoxamKqGUXV9lChoBkdAcZe+3pfQbGgHTZsBaAhHQJKNkQJ5VwR1fZQoaAZHQG8adR77bcpoB02IA2gIR0CSjvLUCq6wdX2UKGgGR0A3hbmU4aP0aAdNFwFoCEdAkpJSW7e2u3V9lChoBkdAceGYA80UGmgHTVsCaAhHQJKShooNNJx1fZQoaAZHQHBiQ1aW5YpoB02LAmgIR0CSkvsI3R5UdX2UKGgGR0BkWtmjCYTkaAdN6ANoCEdAkpbPrWy1NXV9lChoBkdAb+mYwZflZGgHTRoDaAhHQJKXMKMNtqJ1fZQoaAZHQG7JposZpBZoB001A2gIR0CSq9ljEvTPdX2UKGgGR0BxIZx+8XenaAdN5QFoCEdAkq5livxH5XV9lChoBkdAcJDbZezD42gHTZYDaAhHQJKv3i5uqFR1fZQoaAZHQHCkadH2AXloB03fAWgIR0CSr9u+h4+sdX2UKGgGR0BuatQO4G2UaAdN+QFoCEdAkrKcj3VTaXV9lChoBkdAbfOBuGbkO2gHTdMBaAhHQJK4VoysS011fZQoaAZHQHI3s+JP69FoB00SAmgIR0CSucGrCFbndX2UKGgGR0Bx+s57w8W9aAdNkgJoCEdAkrrksjFAFHV9lChoBkdAbV5003wTd2gHTcgBaAhHQJK7r4ZdfLN1fZQoaAZHQEB81SflIVdoB00CAWgIR0CSvrHSnccmdX2UKGgGR0BzfryH2ys0aAdNKAJoCEdAksBGrKeTV3V9lChoBkdAcfV0TlDF62gHTcwBaAhHQJLA5BjWkJt1fZQoaAZHQHGUS+HrQgNoB03vAWgIR0CSwiGsV+I/dX2UKGgGR0Bu0Ojj7yhBaAdNWAJoCEdAksLpokAxSHV9lChoBkdAZT3vRZ2ZA2gHTegDaAhHQJLDLvuw5eZ1fZQoaAZHQG3zeEIw/PhoB02QA2gIR0CSxR3ocJdCdX2UKGgGR0BwfQ0vXbudaAdNPAFoCEdAksZpC0F8onV9lChoBkdAQRmfoRqXW2gHTSABaAhHQJLGdekYXO51fZQoaAZHQHGlFN+LFXJoB03nAWgIR0CSyg7ZWaMKdX2UKGgGR0Byf0TRIBikaAdNOAJoCEdAksqkeMhounV9lChoBkdAbSyNWluWKWgHTYYCaAhHQJLLvtw71Zl1fZQoaAZHQGLTpVKf4AVoB03oA2gIR0CSzKg2qDK6dX2UKGgGR0Bxt77FbVz7aAdNNgFoCEdAks6uGO+7DnV9lChoBkdAcQQqIrOJL2gHTYYBaAhHQJLO7ZHuqm11fZQoaAZHQHFe/5gw485oB01pAWgIR0CSzyAf+0gKdX2UKGgGR0BymM6HTI/8aAdNKQJoCEdAktIWYSg5BHV9lChoBkdAcLq8Zk0782gHTTgBaAhHQJLTIGQjlgd1fZQoaAZHQG/7nXumaYxoB01eAWgIR0CS01TAFgUldX2UKGgGR0BuHL8cdYGMaAdNTAFoCEdAktPemzjWCnV9lChoBkdAcIkOBUaQ3mgHTbUBaAhHQJLUmuSwGGF1fZQoaAZHQGz1X5FgDzRoB03mAWgIR0CS1su+h4+sdX2UKGgGR0Bw/aV6eGwiaAdNrwJoCEdAktgv8AJb+3V9lChoBkdAQgEWCVbA12gHS/xoCEdAktjLDEWIoHV9lChoBkdAbzEN6w+t82gHTW0CaAhHQJLaB9E1EVp1fZQoaAZHQHE2FuivgWJoB02+A2gIR0CS7cv6CUX6dX2UKGgGR0BwIn/HYHxCaAdNowFoCEdAku3qxcE/0XV9lChoBkdAckqd3Sro4mgHTYoBaAhHQJLuEYR/ViF1fZQoaAZHQG2T/2K2rn1oB02CAWgIR0CS7palk6LgdX2UKGgGR0BGzdH+ZPVNaAdNGAFoCEdAkvByW/rSmnV9lChoBkdAcTyOOKfnOmgHTfoBaAhHQJLwiqQzUI91fZQoaAZHQHBA/EOy3TdoB000AWgIR0CS8JmsvIwNdX2UKGgGR0Bucc384xUOaAdNiAFoCEdAkvDiHymQ83V9lChoBkdAcrM73wkPc2gHTT0BaAhHQJL1DX4CZF51fZQoaAZHQHBN/9xZMcpoB00LAmgIR0CS9X2S+xnndX2UKGgGR0Bx/JjriVB2aAdNnwFoCEdAkvYQIldC3XV9lChoBkdAcoJNb1RLsmgHTUEBaAhHQJL2kH2RJVd1fZQoaAZHQG3USGahHsloB01BAWgIR0CS9ylQMx46dX2UKGgGR0BxEjV/c32maAdN8AFoCEdAkviNcGC7LHV9lChoBkdAca6txMnJDGgHTfwBaAhHQJL6HVbzK9x1fZQoaAZHQHDh0NOM2m5oB01GAWgIR0CS+n/LDAJtdX2UKGgGR0Bv3y3mV7hOaAdNYQFoCEdAkvrG2oegc3V9lChoBkdAcwdGjKxLTWgHTSEBaAhHQJL7GQLeANJ1fZQoaAZHQHE1us1baAZoB014AWgIR0CS+23kPtladX2UKGgGR0BxDJ6fJ3gUaAdNTgFoCEdAkvyW9lEqlXV9lChoBkdAcRCKYAsCk2gHTVEBaAhHQJL89PykKu11fZQoaAZHQHId8L4N7SloB02LAWgIR0CS/nKbayrxdX2UKGgGR0BxdWWSlnAZaAdNRwFoCEdAkwCUD6nBL3V9lChoBkdAb5pqeK8+R2gHTUUBaAhHQJMCEBCD28J1fZQoaAZHQHD8whbGFSNoB02kAWgIR0CTBQ0E5hjOdX2UKGgGR0BwnBsDW9UTaAdNpwFoCEdAkwXqneizs3V9lChoBkdAcMXj+aScLGgHTTABaAhHQJMGTEehf0F1fZQoaAZHQHFHr7j1f3NoB012AWgIR0CTBq9hqj8DdX2UKGgGR0BwhH3evZAZaAdNaQFoCEdAkwhA4KhL5HV9lChoBkdAcPnQNTcZcmgHTXIBaAhHQJMIN3hXKbN1fZQoaAZHQG3FqwQlKK5oB01rAWgIR0CTCVZH/cWTdX2UKGgGR0Bw+hvWH1vmaAdNSwFoCEdAkwnu7+T/yXV9lChoBkdAbbK7z06HTWgHTQYDaAhHQJMKyzfJmul1fZQoaAZHQHBZMEV32VVoB006AWgIR0CTCuLuhK15dX2UKGgGR0ByIgeMhougaAdNqgFoCEdAkwsi++M6zXV9lChoBkdAcGZIJJGvwGgHTTcCaAhHQJMMKgam4y51fZQoaAZHQHA2RPGhmGxoB01UAWgIR0CTDvjZtelbdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 264, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}