first trained lunar lander
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: MlpPolicy
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 255.15 +/- 19.55
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **MlpPolicy** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **MlpPolicy** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb909a715a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb909a71630>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb909a716c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb909a71750>", "_build": "<function ActorCriticPolicy._build at 0x7fb909a717e0>", "forward": "<function ActorCriticPolicy.forward at 0x7fb909a71870>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb909a71900>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb909a71990>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb909a71a20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb909a71ab0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb909a71b40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb909a71bd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb909c13000>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 80608, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1708784434605633508, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1sUboPvxm8zPINur6dFzy2s4S9xQMEPQAAgD8AAIA/mvd6vdBQKD8CZVk8kW6GvheBDr2mgvU6AAAAAAAAAAAzMea8uFT2PWZhlT1eF0e+l46ZvOVgObwAAAAAAAAAAGZOWbyPxme6AbUxuvHuP7WLKjK50A5QOQAAgD8AAIA/zdqjPM7JnLx3eYM9M0pzvUNJ2T0qz6A+AACAPwAAgD+mkbI9/z0XP3UN/r2RAZG+HcT4vf6iDr0AAAAAAAAAAPOf973b9Qk/pnsNPv0vpL7NmZQ8AzUpPQAAAAAAAAAAs4XWPRS6ibpo6wQ5xO8zNDZ1fDvvqhe4AAAAAAAAgD/NjLC5w3Eeukt70rojOzW2OLyUOoqn9DkAAIA/AACAP2aqp7vPoA683vQUPV07Ez3ioYU96rzuvQAAgD8AAIA/k9tUPlFwCD+S2Uy+e3dnvsWPAzyLNW69AAAAAAAAAABN+Zy9UiWkP9ZxHr8SXeu++wABPb1ud70AAAAAAAAAAObuA774TSE/e99jvNxejL7XouW8nvspPQAAAAAAAAAAc17kPd0YGT5IPle+x0Z6vkmGeL24ftW7AAAAAAAAAACzBJq9N714P3p9vDydMYe+sWG8vK8HDz0AAAAAAAAAADN+tj3hrJi6LTpZutHLhLXNjz85SMp5OQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.934464, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGuin0K7ZnOMAWyUTeYDjAF0lEdAklfhFNL13HV9lChoBkdAYoLqzqrzXmgHTegDaAhHQJJX+3H7xd91fZQoaAZHQGL6pYs/Y8NoB03oA2gIR0CSV/yCFsYVdX2UKGgGR0Bj0/e+Eh7maAdN6ANoCEdAklf6X4TK1XV9lChoBkdAYyVzFuNxVGgHTegDaAhHQJJX+yprDZV1fZQoaAZHQGXZdrXUYsNoB03oA2gIR0CSV/XwLE1mdX2UKGgGR0BkL/3evZAZaAdN6ANoCEdAklf24mTkhnV9lChoBkdAbhFujRD1G2gHTUcDaAhHQJJrTzTWoWJ1fZQoaAZHQHAk9r433pRoB02BAWgIR0CScAot+TePdX2UKGgGR0Bh0o176YVqaAdN6ANoCEdAknFZEc81XXV9lChoBkdARsqmqHXVb2gHTQYBaAhHQJJyIxyn1nN1fZQoaAZHQGPtjD8+A3FoB03oA2gIR0CSck/FirksdX2UKGgGR0BCzhQFcIJJaAdNKwFoCEdAknO/oNd7fHV9lChoBkdAcQLLpiZv1mgHTXUBaAhHQJJ3L1vl2eR1fZQoaAZHQG03FR51Ng1oB00HAmgIR0CSfqKiwjdIdX2UKGgGR0Bq7ztw71ZlaAdN5QJoCEdAkoWMs+V1OnV9lChoBkdAawCl41P3z2gHTawDaAhHQJKHyHP/rB11fZQoaAZHQHH3uZ1FH8VoB02TAmgIR0CSiBxGUfPpdX2UKGgGR0BnvceCCjDbaAdN6ANoCEdAkokb3j+72HV9lChoBkdAcadYuCf6GmgHTVYCaAhHQJKJRORDCxh1fZQoaAZHQHHdQmJFb3ZoB03OAmgIR0CSifE1l5GCdX2UKGgGR0BvNzh5xBE8aAdN8wJoCEdAkoxamKqGUXV9lChoBkdAcZe+3pfQbGgHTZsBaAhHQJKNkQJ5VwR1fZQoaAZHQG8adR77bcpoB02IA2gIR0CSjvLUCq6wdX2UKGgGR0A3hbmU4aP0aAdNFwFoCEdAkpJSW7e2u3V9lChoBkdAceGYA80UGmgHTVsCaAhHQJKShooNNJx1fZQoaAZHQHBiQ1aW5YpoB02LAmgIR0CSkvsI3R5UdX2UKGgGR0BkWtmjCYTkaAdN6ANoCEdAkpbPrWy1NXV9lChoBkdAb+mYwZflZGgHTRoDaAhHQJKXMKMNtqJ1fZQoaAZHQG7JposZpBZoB001A2gIR0CSq9ljEvTPdX2UKGgGR0BxIZx+8XenaAdN5QFoCEdAkq5livxH5XV9lChoBkdAcJDbZezD42gHTZYDaAhHQJKv3i5uqFR1fZQoaAZHQHCkadH2AXloB03fAWgIR0CSr9u+h4+sdX2UKGgGR0BuatQO4G2UaAdN+QFoCEdAkrKcj3VTaXV9lChoBkdAbfOBuGbkO2gHTdMBaAhHQJK4VoysS011fZQoaAZHQHI3s+JP69FoB00SAmgIR0CSucGrCFbndX2UKGgGR0Bx+s57w8W9aAdNkgJoCEdAkrrksjFAFHV9lChoBkdAbV5003wTd2gHTcgBaAhHQJK7r4ZdfLN1fZQoaAZHQEB81SflIVdoB00CAWgIR0CSvrHSnccmdX2UKGgGR0BzfryH2ys0aAdNKAJoCEdAksBGrKeTV3V9lChoBkdAcfV0TlDF62gHTcwBaAhHQJLA5BjWkJt1fZQoaAZHQHGUS+HrQgNoB03vAWgIR0CSwiGsV+I/dX2UKGgGR0Bu0Ojj7yhBaAdNWAJoCEdAksLpokAxSHV9lChoBkdAZT3vRZ2ZA2gHTegDaAhHQJLDLvuw5eZ1fZQoaAZHQG3zeEIw/PhoB02QA2gIR0CSxR3ocJdCdX2UKGgGR0BwfQ0vXbudaAdNPAFoCEdAksZpC0F8onV9lChoBkdAQRmfoRqXW2gHTSABaAhHQJLGdekYXO51fZQoaAZHQHGlFN+LFXJoB03nAWgIR0CSyg7ZWaMKdX2UKGgGR0Byf0TRIBikaAdNOAJoCEdAksqkeMhounV9lChoBkdAbSyNWluWKWgHTYYCaAhHQJLLvtw71Zl1fZQoaAZHQGLTpVKf4AVoB03oA2gIR0CSzKg2qDK6dX2UKGgGR0Bxt77FbVz7aAdNNgFoCEdAks6uGO+7DnV9lChoBkdAcQQqIrOJL2gHTYYBaAhHQJLO7ZHuqm11fZQoaAZHQHFe/5gw485oB01pAWgIR0CSzyAf+0gKdX2UKGgGR0BymM6HTI/8aAdNKQJoCEdAktIWYSg5BHV9lChoBkdAcLq8Zk0782gHTTgBaAhHQJLTIGQjlgd1fZQoaAZHQG/7nXumaYxoB01eAWgIR0CS01TAFgUldX2UKGgGR0BuHL8cdYGMaAdNTAFoCEdAktPemzjWCnV9lChoBkdAcIkOBUaQ3mgHTbUBaAhHQJLUmuSwGGF1fZQoaAZHQGz1X5FgDzRoB03mAWgIR0CS1su+h4+sdX2UKGgGR0Bw/aV6eGwiaAdNrwJoCEdAktgv8AJb+3V9lChoBkdAQgEWCVbA12gHS/xoCEdAktjLDEWIoHV9lChoBkdAbzEN6w+t82gHTW0CaAhHQJLaB9E1EVp1fZQoaAZHQHE2FuivgWJoB02+A2gIR0CS7cv6CUX6dX2UKGgGR0BwIn/HYHxCaAdNowFoCEdAku3qxcE/0XV9lChoBkdAckqd3Sro4mgHTYoBaAhHQJLuEYR/ViF1fZQoaAZHQG2T/2K2rn1oB02CAWgIR0CS7palk6LgdX2UKGgGR0BGzdH+ZPVNaAdNGAFoCEdAkvByW/rSmnV9lChoBkdAcTyOOKfnOmgHTfoBaAhHQJLwiqQzUI91fZQoaAZHQHBA/EOy3TdoB000AWgIR0CS8JmsvIwNdX2UKGgGR0Bucc384xUOaAdNiAFoCEdAkvDiHymQ83V9lChoBkdAcrM73wkPc2gHTT0BaAhHQJL1DX4CZF51fZQoaAZHQHBN/9xZMcpoB00LAmgIR0CS9X2S+xnndX2UKGgGR0Bx/JjriVB2aAdNnwFoCEdAkvYQIldC3XV9lChoBkdAcoJNb1RLsmgHTUEBaAhHQJL2kH2RJVd1fZQoaAZHQG3USGahHsloB01BAWgIR0CS9ylQMx46dX2UKGgGR0BxEjV/c32maAdN8AFoCEdAkviNcGC7LHV9lChoBkdAca6txMnJDGgHTfwBaAhHQJL6HVbzK9x1fZQoaAZHQHDh0NOM2m5oB01GAWgIR0CS+n/LDAJtdX2UKGgGR0Bv3y3mV7hOaAdNYQFoCEdAkvrG2oegc3V9lChoBkdAcwdGjKxLTWgHTSEBaAhHQJL7GQLeANJ1fZQoaAZHQHE1us1baAZoB014AWgIR0CS+23kPtladX2UKGgGR0BxDJ6fJ3gUaAdNTgFoCEdAkvyW9lEqlXV9lChoBkdAcRCKYAsCk2gHTVEBaAhHQJL89PykKu11fZQoaAZHQHId8L4N7SloB02LAWgIR0CS/nKbayrxdX2UKGgGR0BxdWWSlnAZaAdNRwFoCEdAkwCUD6nBL3V9lChoBkdAb5pqeK8+R2gHTUUBaAhHQJMCEBCD28J1fZQoaAZHQHD8whbGFSNoB02kAWgIR0CTBQ0E5hjOdX2UKGgGR0BwnBsDW9UTaAdNpwFoCEdAkwXqneizs3V9lChoBkdAcMXj+aScLGgHTTABaAhHQJMGTEehf0F1fZQoaAZHQHFHr7j1f3NoB012AWgIR0CTBq9hqj8DdX2UKGgGR0BwhH3evZAZaAdNaQFoCEdAkwhA4KhL5HV9lChoBkdAcPnQNTcZcmgHTXIBaAhHQJMIN3hXKbN1fZQoaAZHQG3FqwQlKK5oB01rAWgIR0CTCVZH/cWTdX2UKGgGR0Bw+hvWH1vmaAdNSwFoCEdAkwnu7+T/yXV9lChoBkdAbbK7z06HTWgHTQYDaAhHQJMKyzfJmul1fZQoaAZHQHBZMEV32VVoB006AWgIR0CTCuLuhK15dX2UKGgGR0ByIgeMhougaAdNqgFoCEdAkwsi++M6zXV9lChoBkdAcGZIJJGvwGgHTTcCaAhHQJMMKgam4y51fZQoaAZHQHA2RPGhmGxoB01UAWgIR0CTDvjZtelbdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 264, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64a1276fc37a2ceaef5f6bf84e8489b67353533f462a80d01a40321459bb0f6b
|
3 |
+
size 148069
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb909a715a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb909a71630>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb909a716c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb909a71750>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb909a717e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb909a71870>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb909a71900>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb909a71990>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb909a71a20>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb909a71ab0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb909a71b40>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb909a71bd0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fb909c13000>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 80608,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1708784434605633508,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1sUboPvxm8zPINur6dFzy2s4S9xQMEPQAAgD8AAIA/mvd6vdBQKD8CZVk8kW6GvheBDr2mgvU6AAAAAAAAAAAzMea8uFT2PWZhlT1eF0e+l46ZvOVgObwAAAAAAAAAAGZOWbyPxme6AbUxuvHuP7WLKjK50A5QOQAAgD8AAIA/zdqjPM7JnLx3eYM9M0pzvUNJ2T0qz6A+AACAPwAAgD+mkbI9/z0XP3UN/r2RAZG+HcT4vf6iDr0AAAAAAAAAAPOf973b9Qk/pnsNPv0vpL7NmZQ8AzUpPQAAAAAAAAAAs4XWPRS6ibpo6wQ5xO8zNDZ1fDvvqhe4AAAAAAAAgD/NjLC5w3Eeukt70rojOzW2OLyUOoqn9DkAAIA/AACAP2aqp7vPoA683vQUPV07Ez3ioYU96rzuvQAAgD8AAIA/k9tUPlFwCD+S2Uy+e3dnvsWPAzyLNW69AAAAAAAAAABN+Zy9UiWkP9ZxHr8SXeu++wABPb1ud70AAAAAAAAAAObuA774TSE/e99jvNxejL7XouW8nvspPQAAAAAAAAAAc17kPd0YGT5IPle+x0Z6vkmGeL24ftW7AAAAAAAAAACzBJq9N714P3p9vDydMYe+sWG8vK8HDz0AAAAAAAAAADN+tj3hrJi6LTpZutHLhLXNjz85SMp5OQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": 0.934464,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGuin0K7ZnOMAWyUTeYDjAF0lEdAklfhFNL13HV9lChoBkdAYoLqzqrzXmgHTegDaAhHQJJX+3H7xd91fZQoaAZHQGL6pYs/Y8NoB03oA2gIR0CSV/yCFsYVdX2UKGgGR0Bj0/e+Eh7maAdN6ANoCEdAklf6X4TK1XV9lChoBkdAYyVzFuNxVGgHTegDaAhHQJJX+yprDZV1fZQoaAZHQGXZdrXUYsNoB03oA2gIR0CSV/XwLE1mdX2UKGgGR0BkL/3evZAZaAdN6ANoCEdAklf24mTkhnV9lChoBkdAbhFujRD1G2gHTUcDaAhHQJJrTzTWoWJ1fZQoaAZHQHAk9r433pRoB02BAWgIR0CScAot+TePdX2UKGgGR0Bh0o176YVqaAdN6ANoCEdAknFZEc81XXV9lChoBkdARsqmqHXVb2gHTQYBaAhHQJJyIxyn1nN1fZQoaAZHQGPtjD8+A3FoB03oA2gIR0CSck/FirksdX2UKGgGR0BCzhQFcIJJaAdNKwFoCEdAknO/oNd7fHV9lChoBkdAcQLLpiZv1mgHTXUBaAhHQJJ3L1vl2eR1fZQoaAZHQG03FR51Ng1oB00HAmgIR0CSfqKiwjdIdX2UKGgGR0Bq7ztw71ZlaAdN5QJoCEdAkoWMs+V1OnV9lChoBkdAawCl41P3z2gHTawDaAhHQJKHyHP/rB11fZQoaAZHQHH3uZ1FH8VoB02TAmgIR0CSiBxGUfPpdX2UKGgGR0BnvceCCjDbaAdN6ANoCEdAkokb3j+72HV9lChoBkdAcadYuCf6GmgHTVYCaAhHQJKJRORDCxh1fZQoaAZHQHHdQmJFb3ZoB03OAmgIR0CSifE1l5GCdX2UKGgGR0BvNzh5xBE8aAdN8wJoCEdAkoxamKqGUXV9lChoBkdAcZe+3pfQbGgHTZsBaAhHQJKNkQJ5VwR1fZQoaAZHQG8adR77bcpoB02IA2gIR0CSjvLUCq6wdX2UKGgGR0A3hbmU4aP0aAdNFwFoCEdAkpJSW7e2u3V9lChoBkdAceGYA80UGmgHTVsCaAhHQJKShooNNJx1fZQoaAZHQHBiQ1aW5YpoB02LAmgIR0CSkvsI3R5UdX2UKGgGR0BkWtmjCYTkaAdN6ANoCEdAkpbPrWy1NXV9lChoBkdAb+mYwZflZGgHTRoDaAhHQJKXMKMNtqJ1fZQoaAZHQG7JposZpBZoB001A2gIR0CSq9ljEvTPdX2UKGgGR0BxIZx+8XenaAdN5QFoCEdAkq5livxH5XV9lChoBkdAcJDbZezD42gHTZYDaAhHQJKv3i5uqFR1fZQoaAZHQHCkadH2AXloB03fAWgIR0CSr9u+h4+sdX2UKGgGR0BuatQO4G2UaAdN+QFoCEdAkrKcj3VTaXV9lChoBkdAbfOBuGbkO2gHTdMBaAhHQJK4VoysS011fZQoaAZHQHI3s+JP69FoB00SAmgIR0CSucGrCFbndX2UKGgGR0Bx+s57w8W9aAdNkgJoCEdAkrrksjFAFHV9lChoBkdAbV5003wTd2gHTcgBaAhHQJK7r4ZdfLN1fZQoaAZHQEB81SflIVdoB00CAWgIR0CSvrHSnccmdX2UKGgGR0BzfryH2ys0aAdNKAJoCEdAksBGrKeTV3V9lChoBkdAcfV0TlDF62gHTcwBaAhHQJLA5BjWkJt1fZQoaAZHQHGUS+HrQgNoB03vAWgIR0CSwiGsV+I/dX2UKGgGR0Bu0Ojj7yhBaAdNWAJoCEdAksLpokAxSHV9lChoBkdAZT3vRZ2ZA2gHTegDaAhHQJLDLvuw5eZ1fZQoaAZHQG3zeEIw/PhoB02QA2gIR0CSxR3ocJdCdX2UKGgGR0BwfQ0vXbudaAdNPAFoCEdAksZpC0F8onV9lChoBkdAQRmfoRqXW2gHTSABaAhHQJLGdekYXO51fZQoaAZHQHGlFN+LFXJoB03nAWgIR0CSyg7ZWaMKdX2UKGgGR0Byf0TRIBikaAdNOAJoCEdAksqkeMhounV9lChoBkdAbSyNWluWKWgHTYYCaAhHQJLLvtw71Zl1fZQoaAZHQGLTpVKf4AVoB03oA2gIR0CSzKg2qDK6dX2UKGgGR0Bxt77FbVz7aAdNNgFoCEdAks6uGO+7DnV9lChoBkdAcQQqIrOJL2gHTYYBaAhHQJLO7ZHuqm11fZQoaAZHQHFe/5gw485oB01pAWgIR0CSzyAf+0gKdX2UKGgGR0BymM6HTI/8aAdNKQJoCEdAktIWYSg5BHV9lChoBkdAcLq8Zk0782gHTTgBaAhHQJLTIGQjlgd1fZQoaAZHQG/7nXumaYxoB01eAWgIR0CS01TAFgUldX2UKGgGR0BuHL8cdYGMaAdNTAFoCEdAktPemzjWCnV9lChoBkdAcIkOBUaQ3mgHTbUBaAhHQJLUmuSwGGF1fZQoaAZHQGz1X5FgDzRoB03mAWgIR0CS1su+h4+sdX2UKGgGR0Bw/aV6eGwiaAdNrwJoCEdAktgv8AJb+3V9lChoBkdAQgEWCVbA12gHS/xoCEdAktjLDEWIoHV9lChoBkdAbzEN6w+t82gHTW0CaAhHQJLaB9E1EVp1fZQoaAZHQHE2FuivgWJoB02+A2gIR0CS7cv6CUX6dX2UKGgGR0BwIn/HYHxCaAdNowFoCEdAku3qxcE/0XV9lChoBkdAckqd3Sro4mgHTYoBaAhHQJLuEYR/ViF1fZQoaAZHQG2T/2K2rn1oB02CAWgIR0CS7palk6LgdX2UKGgGR0BGzdH+ZPVNaAdNGAFoCEdAkvByW/rSmnV9lChoBkdAcTyOOKfnOmgHTfoBaAhHQJLwiqQzUI91fZQoaAZHQHBA/EOy3TdoB000AWgIR0CS8JmsvIwNdX2UKGgGR0Bucc384xUOaAdNiAFoCEdAkvDiHymQ83V9lChoBkdAcrM73wkPc2gHTT0BaAhHQJL1DX4CZF51fZQoaAZHQHBN/9xZMcpoB00LAmgIR0CS9X2S+xnndX2UKGgGR0Bx/JjriVB2aAdNnwFoCEdAkvYQIldC3XV9lChoBkdAcoJNb1RLsmgHTUEBaAhHQJL2kH2RJVd1fZQoaAZHQG3USGahHsloB01BAWgIR0CS9ylQMx46dX2UKGgGR0BxEjV/c32maAdN8AFoCEdAkviNcGC7LHV9lChoBkdAca6txMnJDGgHTfwBaAhHQJL6HVbzK9x1fZQoaAZHQHDh0NOM2m5oB01GAWgIR0CS+n/LDAJtdX2UKGgGR0Bv3y3mV7hOaAdNYQFoCEdAkvrG2oegc3V9lChoBkdAcwdGjKxLTWgHTSEBaAhHQJL7GQLeANJ1fZQoaAZHQHE1us1baAZoB014AWgIR0CS+23kPtladX2UKGgGR0BxDJ6fJ3gUaAdNTgFoCEdAkvyW9lEqlXV9lChoBkdAcRCKYAsCk2gHTVEBaAhHQJL89PykKu11fZQoaAZHQHId8L4N7SloB02LAWgIR0CS/nKbayrxdX2UKGgGR0BxdWWSlnAZaAdNRwFoCEdAkwCUD6nBL3V9lChoBkdAb5pqeK8+R2gHTUUBaAhHQJMCEBCD28J1fZQoaAZHQHD8whbGFSNoB02kAWgIR0CTBQ0E5hjOdX2UKGgGR0BwnBsDW9UTaAdNpwFoCEdAkwXqneizs3V9lChoBkdAcMXj+aScLGgHTTABaAhHQJMGTEehf0F1fZQoaAZHQHFHr7j1f3NoB012AWgIR0CTBq9hqj8DdX2UKGgGR0BwhH3evZAZaAdNaQFoCEdAkwhA4KhL5HV9lChoBkdAcPnQNTcZcmgHTXIBaAhHQJMIN3hXKbN1fZQoaAZHQG3FqwQlKK5oB01rAWgIR0CTCVZH/cWTdX2UKGgGR0Bw+hvWH1vmaAdNSwFoCEdAkwnu7+T/yXV9lChoBkdAbbK7z06HTWgHTQYDaAhHQJMKyzfJmul1fZQoaAZHQHBZMEV32VVoB006AWgIR0CTCuLuhK15dX2UKGgGR0ByIgeMhougaAdNqgFoCEdAkwsi++M6zXV9lChoBkdAcGZIJJGvwGgHTTcCaAhHQJMMKgam4y51fZQoaAZHQHA2RPGhmGxoB01UAWgIR0CTDvjZtelbdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 264,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c382ef4f847c7a47a1a20cc5846372484046d14f5535c3bd650d1a2cc5899712
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a223b9fe0701bec3433a78d24046457a3ea6d2407a1e6ea548d2e1d8f03d58ae
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (164 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 255.1500001, "std_reward": 19.551510201561065, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-02-24T14:27:20.528409"}
|