File size: 13,125 Bytes
b32b7b6
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e786a64a710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e786a64a7a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e786a64a830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e786a64a8c0>", "_build": "<function ActorCriticPolicy._build at 0x7e786a64a950>", "forward": "<function ActorCriticPolicy.forward at 0x7e786a64a9e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e786a64aa70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e786a64ab00>", "_predict": "<function ActorCriticPolicy._predict at 0x7e786a64ab90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e786a64ac20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e786a64acb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e786a64ad40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e786a651180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694993942619560610, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAALKDpDyt4RE86cY7O2a2WLt8o3U8DrGhuSCLyjsmeZ28vcglPYzO6zxMydu7B+BdvTAmi7v1Oq0+CzZnPNT39b4FDgy9kHEavc4agzzL9o49Agm+PPjcEz5fY6Q7YIw0vgwFOj1m2kk+y7eiujxwjr6RC1M9V2NovpmRUjvq3ls+qKlBPaxBY77qHxC8uRmqPpwjDjyTFCm+nU4wvAV+oD6X93k9yj8VPoHiRbsplzq++tjjPMt6Qj338WC8ARqwvUAVHz1pGAG9Rkq0uz4tHT1j7sQ8n6FXvteC97srIo4+hPBbPOK8n7wu1Zk7lxWBPXRuYz056HK+4pJVvKommD6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLBIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH9AAAAAAACMAWyUTfQBjAF0lEdAeG/QQ+UyHnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHhwnjQzDXR1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4tCHIp6QedX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeLSuv2Xb/XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHi18vugHu91fZQoaAZHQH9AAAAAAABoB030AWgIR0B4tjaYeDFqdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeLc0oScslXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHi3O8f3evZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4uEAeaKDTdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeLhVsk6cRXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHi4v0qYqoZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4uPjS5RTCdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeLlpMpPRA3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHi7OVkc0ch1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4u4Jv5xiodX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeLxu/1xsEnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHi8y8jAzpJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4vZdSl3yJdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeMCD6nBLwnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHjBNzXBgu11fZQoaAZHQH9AAAAAAABoB030AWgIR0B4wnmwJPZadX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeMK8gpz90nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHjDwVTJhfB1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4w8rpaA4GdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeMS4HX2/SHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHjEzq4YrJ91fZQoaAZHQH9AAAAAAABoB030AWgIR0B4xTnnuAqedX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeMV0nw5NoXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHjF6aoddVx1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4x79LpRoAdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeMgaF23az3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHjJFSCOFQF1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4yX9VFQVLdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeMpTibUgCHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkR8+7lJYl1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5EsAp8WsSdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeRSHMEA5rHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkU1lTWGyp1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5Fj9m6GxmdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeRZZxaPjn3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkXkkjX4CZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5F8AWBSUDdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeRhKQaJhv3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkYkSRKYiR1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5GTuBtk4FdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeRvawUxmCnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkcLkGRmsh1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5HYgV45cUdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeR4YNAkcCHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkfQVO9FnZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5I7hjvuw5dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeSSIMjNY83V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkmll5GBnV1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5JuuLaVUudX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeShdKujh1nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkofm5lOGl1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5Kdyhi9ZidX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeSoUS7GvOnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkqv8Muvll1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5Kw29+PRzdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeSvKxLTQV3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkujq0MPSV1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5Lu8BdUsGdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeTB9PDYRNHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkxD1K5Cnh1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5Ml4HHFP0dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeTcW7OE/S3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmEHevZAY51fZQoaAZHQH9AAAAAAABoB030AWgIR0B5hWNhmXgMdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeYWm1pj+aXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmGowdsBQx1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5hqxIJ7b+dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeYeRxtHhCXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmHo9ovi991fZQoaAZHQH9AAAAAAABoB030AWgIR0B5iAqaw2VFdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeYhDl5nlGXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmIuBxxT851fZQoaAZHQH9AAAAAAABoB030AWgIR0B5io8FINExdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeYrSq2jO9nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmLvU8V58l1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5jBzjm0VrdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeY0LrX18LXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmP5aaCtih1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5kHwTdtVJdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeZG4vN/vv3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmSBCMPz4F1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5kwvTPSlWdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeZMXHBDXv3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmUEhJRO1x1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5lDCXQdCFdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeZSilzltCXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmU3zDn/1h1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5lWc6NlyzdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeZdxjJ+2E3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmXuv2Xb/R1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5mMtOEdvLdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeZkzJZGKAXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmaDyJ9Aop1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5nQlJHy3DdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeZ2zv7WNFXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVEAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYEAAAAAAAAAAEBAQGUaBRLBIWUaBh0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgQKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaApLBIWUaBh0lFKUjARoaWdolGgQKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaApLBIWUaBh0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True]", "bounded_above": "[ True  True  True  True]", "_shape": [4], "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "2", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.98, "gae_lambda": 0.98, "ent_coef": 0.05, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}