balance that shit
Browse files- CartPole-v1.zip +3 -0
- CartPole-v1/_stable_baselines3_version +1 -0
- CartPole-v1/data +99 -0
- CartPole-v1/policy.optimizer.pth +3 -0
- CartPole-v1/policy.pth +3 -0
- CartPole-v1/pytorch_variables.pth +3 -0
- CartPole-v1/system_info.txt +9 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
CartPole-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d2605f7c5a002538f9d0169d231e58c192626ff0ce6a5ae3758cf431c80e0372
|
3 |
+
size 138441
|
CartPole-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
CartPole-v1/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7e786a64a710>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e786a64a7a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e786a64a830>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e786a64a8c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7e786a64a950>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7e786a64a9e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7e786a64aa70>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e786a64ab00>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7e786a64ab90>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e786a64ac20>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e786a64acb0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7e786a64ad40>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e786a651180>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1694993942619560610,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAALKDpDyt4RE86cY7O2a2WLt8o3U8DrGhuSCLyjsmeZ28vcglPYzO6zxMydu7B+BdvTAmi7v1Oq0+CzZnPNT39b4FDgy9kHEavc4agzzL9o49Agm+PPjcEz5fY6Q7YIw0vgwFOj1m2kk+y7eiujxwjr6RC1M9V2NovpmRUjvq3ls+qKlBPaxBY77qHxC8uRmqPpwjDjyTFCm+nU4wvAV+oD6X93k9yj8VPoHiRbsplzq++tjjPMt6Qj338WC8ARqwvUAVHz1pGAG9Rkq0uz4tHT1j7sQ8n6FXvteC97srIo4+hPBbPOK8n7wu1Zk7lxWBPXRuYz056HK+4pJVvKommD6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLBIaUjAFDlHSUUpQu"
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH9AAAAAAACMAWyUTfQBjAF0lEdAeG/QQ+UyHnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHhwnjQzDXR1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4tCHIp6QedX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeLSuv2Xb/XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHi18vugHu91fZQoaAZHQH9AAAAAAABoB030AWgIR0B4tjaYeDFqdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeLc0oScslXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHi3O8f3evZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4uEAeaKDTdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeLhVsk6cRXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHi4v0qYqoZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4uPjS5RTCdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeLlpMpPRA3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHi7OVkc0ch1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4u4Jv5xiodX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeLxu/1xsEnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHi8y8jAzpJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4vZdSl3yJdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeMCD6nBLwnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHjBNzXBgu11fZQoaAZHQH9AAAAAAABoB030AWgIR0B4wnmwJPZadX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeMK8gpz90nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHjDwVTJhfB1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4w8rpaA4GdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeMS4HX2/SHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHjEzq4YrJ91fZQoaAZHQH9AAAAAAABoB030AWgIR0B4xTnnuAqedX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeMV0nw5NoXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHjF6aoddVx1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4x79LpRoAdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeMgaF23az3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHjJFSCOFQF1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4yX9VFQVLdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeMpTibUgCHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkR8+7lJYl1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5EsAp8WsSdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeRSHMEA5rHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkU1lTWGyp1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5Fj9m6GxmdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeRZZxaPjn3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkXkkjX4CZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5F8AWBSUDdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeRhKQaJhv3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkYkSRKYiR1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5GTuBtk4FdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeRvawUxmCnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkcLkGRmsh1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5HYgV45cUdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeR4YNAkcCHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkfQVO9FnZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5I7hjvuw5dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeSSIMjNY83V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkmll5GBnV1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5JuuLaVUudX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeShdKujh1nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkofm5lOGl1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5Kdyhi9ZidX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeSoUS7GvOnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkqv8Muvll1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5Kw29+PRzdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeSvKxLTQV3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkujq0MPSV1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5Lu8BdUsGdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeTB9PDYRNHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkxD1K5Cnh1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5Ml4HHFP0dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeTcW7OE/S3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmEHevZAY51fZQoaAZHQH9AAAAAAABoB030AWgIR0B5hWNhmXgMdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeYWm1pj+aXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmGowdsBQx1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5hqxIJ7b+dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeYeRxtHhCXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmHo9ovi991fZQoaAZHQH9AAAAAAABoB030AWgIR0B5iAqaw2VFdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeYhDl5nlGXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmIuBxxT851fZQoaAZHQH9AAAAAAABoB030AWgIR0B5io8FINExdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeYrSq2jO9nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmLvU8V58l1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5jBzjm0VrdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeY0LrX18LXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmP5aaCtih1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5kHwTdtVJdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeZG4vN/vv3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmSBCMPz4F1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5kwvTPSlWdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeZMXHBDXv3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmUEhJRO1x1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5lDCXQdCFdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeZSilzltCXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmU3zDn/1h1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5lWc6NlyzdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeZdxjJ+2E3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmXuv2Xb/R1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5mMtOEdvLdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeZkzJZGKAXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmaDyJ9Aop1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5nQlJHy3DdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeZ2zv7WNFXVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVEAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYEAAAAAAAAAAEBAQGUaBRLBIWUaBh0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgQKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaApLBIWUaBh0lFKUjARoaWdolGgQKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaApLBIWUaBh0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True]",
|
60 |
+
"bounded_above": "[ True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
4
|
63 |
+
],
|
64 |
+
"low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
|
65 |
+
"high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
|
66 |
+
"low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
|
67 |
+
"high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "2",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.98,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.05,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
CartPole-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f69afbcc81d7785cc8a0e4092124aabaa2731d5a7c15ca17e0550d8c9c3b7de
|
3 |
+
size 82809
|
CartPole-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae45fc8ace75f9c918224da0fc95be5ac7be021685f8300ee081836077de7638
|
3 |
+
size 40769
|
CartPole-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
CartPole-v1/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- CartPole-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: CartPole-v1
|
16 |
+
type: CartPole-v1
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 500.00 +/- 0.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **CartPole-v1**
|
25 |
+
This is a trained model of a **PPO** agent playing **CartPole-v1**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e786a64a710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e786a64a7a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e786a64a830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e786a64a8c0>", "_build": "<function ActorCriticPolicy._build at 0x7e786a64a950>", "forward": "<function ActorCriticPolicy.forward at 0x7e786a64a9e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e786a64aa70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e786a64ab00>", "_predict": "<function ActorCriticPolicy._predict at 0x7e786a64ab90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e786a64ac20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e786a64acb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e786a64ad40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e786a651180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694993942619560610, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAALKDpDyt4RE86cY7O2a2WLt8o3U8DrGhuSCLyjsmeZ28vcglPYzO6zxMydu7B+BdvTAmi7v1Oq0+CzZnPNT39b4FDgy9kHEavc4agzzL9o49Agm+PPjcEz5fY6Q7YIw0vgwFOj1m2kk+y7eiujxwjr6RC1M9V2NovpmRUjvq3ls+qKlBPaxBY77qHxC8uRmqPpwjDjyTFCm+nU4wvAV+oD6X93k9yj8VPoHiRbsplzq++tjjPMt6Qj338WC8ARqwvUAVHz1pGAG9Rkq0uz4tHT1j7sQ8n6FXvteC97srIo4+hPBbPOK8n7wu1Zk7lxWBPXRuYz056HK+4pJVvKommD6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLBIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH9AAAAAAACMAWyUTfQBjAF0lEdAeG/QQ+UyHnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHhwnjQzDXR1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4tCHIp6QedX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeLSuv2Xb/XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHi18vugHu91fZQoaAZHQH9AAAAAAABoB030AWgIR0B4tjaYeDFqdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeLc0oScslXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHi3O8f3evZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4uEAeaKDTdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeLhVsk6cRXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHi4v0qYqoZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4uPjS5RTCdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeLlpMpPRA3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHi7OVkc0ch1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4u4Jv5xiodX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeLxu/1xsEnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHi8y8jAzpJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4vZdSl3yJdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeMCD6nBLwnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHjBNzXBgu11fZQoaAZHQH9AAAAAAABoB030AWgIR0B4wnmwJPZadX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeMK8gpz90nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHjDwVTJhfB1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4w8rpaA4GdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeMS4HX2/SHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHjEzq4YrJ91fZQoaAZHQH9AAAAAAABoB030AWgIR0B4xTnnuAqedX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeMV0nw5NoXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHjF6aoddVx1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4x79LpRoAdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeMgaF23az3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHjJFSCOFQF1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4yX9VFQVLdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeMpTibUgCHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkR8+7lJYl1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5EsAp8WsSdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeRSHMEA5rHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkU1lTWGyp1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5Fj9m6GxmdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeRZZxaPjn3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkXkkjX4CZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5F8AWBSUDdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeRhKQaJhv3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkYkSRKYiR1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5GTuBtk4FdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeRvawUxmCnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkcLkGRmsh1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5HYgV45cUdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeR4YNAkcCHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkfQVO9FnZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5I7hjvuw5dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeSSIMjNY83V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkmll5GBnV1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5JuuLaVUudX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeShdKujh1nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkofm5lOGl1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5Kdyhi9ZidX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeSoUS7GvOnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkqv8Muvll1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5Kw29+PRzdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeSvKxLTQV3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkujq0MPSV1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5Lu8BdUsGdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeTB9PDYRNHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHkxD1K5Cnh1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5Ml4HHFP0dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeTcW7OE/S3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmEHevZAY51fZQoaAZHQH9AAAAAAABoB030AWgIR0B5hWNhmXgMdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeYWm1pj+aXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmGowdsBQx1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5hqxIJ7b+dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeYeRxtHhCXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmHo9ovi991fZQoaAZHQH9AAAAAAABoB030AWgIR0B5iAqaw2VFdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeYhDl5nlGXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmIuBxxT851fZQoaAZHQH9AAAAAAABoB030AWgIR0B5io8FINExdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeYrSq2jO9nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmLvU8V58l1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5jBzjm0VrdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeY0LrX18LXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmP5aaCtih1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5kHwTdtVJdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeZG4vN/vv3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmSBCMPz4F1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5kwvTPSlWdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeZMXHBDXv3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmUEhJRO1x1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5lDCXQdCFdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeZSilzltCXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmU3zDn/1h1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5lWc6NlyzdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeZdxjJ+2E3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmXuv2Xb/R1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5mMtOEdvLdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeZkzJZGKAXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHmaDyJ9Aop1fZQoaAZHQH9AAAAAAABoB030AWgIR0B5nQlJHy3DdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeZ2zv7WNFXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVEAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYEAAAAAAAAAAEBAQGUaBRLBIWUaBh0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgQKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaApLBIWUaBh0lFKUjARoaWdolGgQKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaApLBIWUaBh0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "2", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.98, "gae_lambda": 0.98, "ent_coef": 0.05, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (49 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 500.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-17T23:47:02.243747"}
|