File size: 1,741 Bytes
2d36e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de7fd94
3a21d2e
 
2d36e29
a7a741b
 
 
 
 
 
 
 
 
2d36e29
add97f9
 
 
 
 
 
 
2d36e29
3a21d2e
2d36e29
 
3a21d2e
 
2d36e29
 
 
 
361b516
2d36e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: fashion-clothing-decade
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Fashion Clothing Decade
This model predicts what decade clothing is from. It takes an image and outputs one of the following labels: 
**1910s, 1920s, 1930s, 1940s, 1950s, 1960s, 1970s, 1980s, 1990s, 2000s**

### How to use
```python
from transformers import pipeline

pipe = pipeline("image-classification", model="tonyassi/fashion-clothing-decade")
result = pipe('image.png')

print(result)
```

## Dataset
Trained on a total of 2500 images. ~250 images from each label.

### 1910s
![](https://cdn.discordapp.com/attachments/1120417968032063538/1173750000296145007/1910s.jpg?ex=656516df&is=6552a1df&hm=f954aea989d10b43e1c70d827988845cebbb2138a2ea795c5288119beeaf9f95&)


## Model description
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k).

## Training and evaluation data
- Loss: 0.8707
- Accuracy: 0.7505

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1