CrossEncoder based on distilbert/distilroberta-base
This is a Cross Encoder model finetuned from distilbert/distilroberta-base on the quora-duplicates dataset using the sentence-transformers library. It computes scores for pairs of texts, which can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: distilbert/distilroberta-base
- Maximum Sequence Length: 514 tokens
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("sentence_transformers_model_id")
# Get scores for pairs...
pairs = [
['What is the step by step guide to invest in share market in india?', 'What is the step by step guide to invest in share market?'],
['What is the story of Kohinoor (Koh-i-Noor) Diamond?', 'What would happen if the Indian government stole the Kohinoor (Koh-i-Noor) diamond back?'],
['How can I increase the speed of my internet connection while using a VPN?', 'How can Internet speed be increased by hacking through DNS?'],
['Why am I mentally very lonely? How can I solve it?', 'Find the remainder when [math]23^{24}[/math] is divided by 24,23?'],
['Which one dissolve in water quikly sugar, salt, methane and carbon di oxide?', 'Which fish would survive in salt water?'],
]
scores = model.predict(pairs)
print(scores.shape)
# [5]
# ... or rank different texts based on similarity to a single text
ranks = model.rank(
'What is the step by step guide to invest in share market in india?',
[
'What is the step by step guide to invest in share market?',
'What would happen if the Indian government stole the Kohinoor (Koh-i-Noor) diamond back?',
'How can Internet speed be increased by hacking through DNS?',
'Find the remainder when [math]23^{24}[/math] is divided by 24,23?',
'Which fish would survive in salt water?',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Evaluation
Metrics
Cross Encoder Classification
- Datasets:
quora-duplicates-dev
andquora-duplicates-test
- Evaluated with
CEClassificationEvaluator
Metric | quora-duplicates-dev | quora-duplicates-test |
---|---|---|
accuracy | 0.8938 | 0.8938 |
accuracy_threshold | 0.5089 | 0.5091 |
f1 | 0.8612 | 0.8612 |
f1_threshold | 0.3856 | 0.3858 |
precision | 0.8183 | 0.8183 |
recall | 0.9089 | 0.9089 |
average_precision | 0.9203 | 0.9203 |
Training Details
Training Dataset
quora-duplicates
- Dataset: quora-duplicates at 451a485
- Size: 404,290 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 1 characters
- mean: 59.15 characters
- max: 354 characters
- min: 6 characters
- mean: 60.74 characters
- max: 399 characters
- 0: ~64.20%
- 1: ~35.80%
- Samples:
sentence1 sentence2 label What are the features of the Indian caste system?
What triggers you the most when you play video games?
0
What is the best place to learn Mandarin Chinese in Singapore?
What is the best place in Singapore for durian in December?
0
What will be Hillary Clinton's India policy if she wins the election?
How would the bilateral relationship between India and the USA be under Hillary Clinton's presidency?
1
- Loss:
BinaryCrossEntropyLoss
Evaluation Dataset
quora-duplicates
- Dataset: quora-duplicates at 451a485
- Size: 404,290 evaluation samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 11 characters
- mean: 57.9 characters
- max: 244 characters
- min: 12 characters
- mean: 59.33 characters
- max: 221 characters
- 0: ~62.00%
- 1: ~38.00%
- Samples:
sentence1 sentence2 label What is the step by step guide to invest in share market in india?
What is the step by step guide to invest in share market?
0
What is the story of Kohinoor (Koh-i-Noor) Diamond?
What would happen if the Indian government stole the Kohinoor (Koh-i-Noor) diamond back?
0
How can I increase the speed of my internet connection while using a VPN?
How can Internet speed be increased by hacking through DNS?
0
- Loss:
BinaryCrossEntropyLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 1warmup_ratio
: 0.1bf16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | quora-duplicates-dev_average_precision | quora-duplicates-test_average_precision |
---|---|---|---|---|---|
-1 | -1 | - | - | 0.3711 | - |
0.0167 | 100 | 0.6574 | - | - | - |
0.0333 | 200 | 0.4804 | - | - | - |
0.0500 | 300 | 0.4406 | - | - | - |
0.0666 | 400 | 0.4208 | - | - | - |
0.0833 | 500 | 0.3929 | 0.3958 | 0.8210 | - |
0.0999 | 600 | 0.3986 | - | - | - |
0.1166 | 700 | 0.3743 | - | - | - |
0.1332 | 800 | 0.3938 | - | - | - |
0.1499 | 900 | 0.3602 | - | - | - |
0.1665 | 1000 | 0.3714 | 0.3437 | 0.8565 | - |
0.1832 | 1100 | 0.3486 | - | - | - |
0.1998 | 1200 | 0.3479 | - | - | - |
0.2165 | 1300 | 0.3417 | - | - | - |
0.2331 | 1400 | 0.3425 | - | - | - |
0.2498 | 1500 | 0.3353 | 0.3264 | 0.8742 | - |
0.2664 | 1600 | 0.3335 | - | - | - |
0.2831 | 1700 | 0.3274 | - | - | - |
0.2998 | 1800 | 0.3284 | - | - | - |
0.3164 | 1900 | 0.3118 | - | - | - |
0.3331 | 2000 | 0.3073 | 0.3282 | 0.8826 | - |
0.3497 | 2100 | 0.3233 | - | - | - |
0.3664 | 2200 | 0.3072 | - | - | - |
0.3830 | 2300 | 0.314 | - | - | - |
0.3997 | 2400 | 0.3065 | - | - | - |
0.4163 | 2500 | 0.3046 | 0.2877 | 0.8930 | - |
0.4330 | 2600 | 0.2857 | - | - | - |
0.4496 | 2700 | 0.285 | - | - | - |
0.4663 | 2800 | 0.2957 | - | - | - |
0.4829 | 2900 | 0.2965 | - | - | - |
0.4996 | 3000 | 0.2824 | 0.2842 | 0.8998 | - |
0.5162 | 3100 | 0.3019 | - | - | - |
0.5329 | 3200 | 0.2841 | - | - | - |
0.5495 | 3300 | 0.2981 | - | - | - |
0.5662 | 3400 | 0.2878 | - | - | - |
0.5828 | 3500 | 0.278 | 0.2803 | 0.9061 | - |
0.5995 | 3600 | 0.2841 | - | - | - |
0.6162 | 3700 | 0.2794 | - | - | - |
0.6328 | 3800 | 0.2808 | - | - | - |
0.6495 | 3900 | 0.27 | - | - | - |
0.6661 | 4000 | 0.2719 | 0.2697 | 0.9091 | - |
0.6828 | 4100 | 0.2792 | - | - | - |
0.6994 | 4200 | 0.2669 | - | - | - |
0.7161 | 4300 | 0.2696 | - | - | - |
0.7327 | 4400 | 0.2642 | - | - | - |
0.7494 | 4500 | 0.2684 | 0.2591 | 0.9140 | - |
0.7660 | 4600 | 0.2593 | - | - | - |
0.7827 | 4700 | 0.2756 | - | - | - |
0.7993 | 4800 | 0.2584 | - | - | - |
0.8160 | 4900 | 0.2525 | - | - | - |
0.8326 | 5000 | 0.267 | 0.2540 | 0.9168 | - |
0.8493 | 5100 | 0.2612 | - | - | - |
0.8659 | 5200 | 0.2607 | - | - | - |
0.8826 | 5300 | 0.2565 | - | - | - |
0.8993 | 5400 | 0.2432 | - | - | - |
0.9159 | 5500 | 0.2568 | 0.2489 | 0.9198 | - |
0.9326 | 5600 | 0.2572 | - | - | - |
0.9492 | 5700 | 0.2658 | - | - | - |
0.9659 | 5800 | 0.2568 | - | - | - |
0.9825 | 5900 | 0.2539 | - | - | - |
0.9992 | 6000 | 0.2458 | 0.2503 | 0.9203 | - |
-1 | -1 | - | - | - | 0.9203 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.069 kWh
- Carbon Emitted: 0.027 kg of CO2
- Hours Used: 0.214 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.5.0.dev0
- Transformers: 4.49.0.dev0
- PyTorch: 2.5.0+cu121
- Accelerate: 1.3.0
- Datasets: 2.20.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the HF Inference API does not support sentence-transformers models with pipeline type text-classification
Model tree for tomaarsen/reranker-distilroberta-base-quora-duplicates
Base model
distilbert/distilroberta-baseDataset used to train tomaarsen/reranker-distilroberta-base-quora-duplicates
Evaluation results
- Accuracy on quora duplicates devself-reported0.894
- Accuracy Threshold on quora duplicates devself-reported0.509
- F1 on quora duplicates devself-reported0.861
- F1 Threshold on quora duplicates devself-reported0.386
- Precision on quora duplicates devself-reported0.818
- Recall on quora duplicates devself-reported0.909
- Average Precision on quora duplicates devself-reported0.920
- Accuracy on quora duplicates testself-reported0.894
- Accuracy Threshold on quora duplicates testself-reported0.509
- F1 on quora duplicates testself-reported0.861