File size: 29,759 Bytes
02da0dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
---

base_model: google-bert/bert-base-uncased
datasets:
- sentence-transformers/gooaq
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3002496
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: extreme old age is called?
  sentences:
  - The organic process of ageing is called senescence, the medical study of the aging
    process is called gerontology, and the study of diseases that afflict the elderly
    is called geriatrics. ... Old age is not a definite biological stage, as the chronological
    age denoted as "old age" varies culturally and historically.
  - The syllabus is described as the summary of the topics covered or units to be
    taught in the particular subject. Curriculum refers to the overall content, taught
    in an educational system or a course. ... Syllabus is descriptive in nature, but
    the curriculum is prescriptive. Syllabus is set for a particular subject.
  - Keep records for 3 years from the date you filed your original return or 2 years
    from the date you paid the tax, whichever is later, if you file a claim for credit
    or refund after you file your return. Keep records for 7 years if you file a claim
    for a loss from worthless securities or bad debt deduction.
- source_sentence: has or as when to use?
  sentences:
  - 'Re: Has or as As is an adverb used in comparisons to refer to the extent or degree

    of something; a conjunction 1 used to indicate simultaneous occurrence. 2 used

    to indicate by comparison the way that something happens.'
  - Go through their posts, likes, comments, and followers to see if the suspect's
    username appears. If the user's name appears, click on it. If you click on the
    user's profile and are unable to see their content, even though it says they have
    a number of posts at the top of their profile, then they have blocked you.
  - There's just a 2.6% + $0.30 fee on any portion funded by your credit or debit
    card.
- source_sentence: how many inches of snow is good for snowboarding?
  sentences:
  - All kinds of tomato paste come with a best-by date. Like other condiments, such
    as bbq sauce, the unopened paste will easily last months past the date on the
    label.
  - Data Storage Data in an SD card is stored on a series of electronic components
    called NAND chips. These chips allow data to be written and stored on the SD card.
    As the chips have no moving parts, data can be transferred from the cards quickly,
    far exceeding the speeds available to CD or hard-drive media.
  - In these areas, as little as 2-4 inches of snow may be sufficient. Other pistes,
    however, may traverse uneven, rocky terrain. In these areas, several inches to
    several feet may be necessary to cover the rocky surface. Even more important
    than the amount of snowfall is the amount of snow that is retained on the slopes.
- source_sentence: is it normal to have a period after not having one for 8 months?
  sentences:
  - It is not normal to bleed or spot 12 months or more after your last period. Bleeding
    after menopause is usually a sign of a minor health problem but can sometimes
    be an early sign of more serious disease.
  - '[''What are your recruiting needs for my class? ... '', ''What are the next steps

    in the recruiting process with your program? ... '', ''What is your recruiting

    timeline? ... '', ''What does a typical day or week look like for a player during

    the season? ... '', ''What are the off-season expectations for a player? ... '',

    ''What are the values of your program?'']'
  - Registered retirement savings plans (RRSP) and registered pension plans (RPP)
    are both retirement savings plans that are registered with the Canada Revenue
    Agency (CRA). RRSPs are individual retirement plans, while RPPs are plans established
    by companies to provide pensions to their employees.
- source_sentence: what health services are covered by medicare?
  sentences:
  - Medicare Part A hospital insurance covers inpatient hospital care, skilled nursing
    facility, hospice, lab tests, surgery, home health care.
  - Meiocytes are the diploid cells which undergo meiosis to produce gametes. They
    are also known as gamete mother cells. The chromosome number in diploid cells
    of onion is 16. So meiocytes have 16 chromosomes.
  - Elephants have the longest gestation period of all mammals. These gentle giants'
    pregnancies last for more than a year and a half. The average gestation period
    of an elephant is about 640 to 660 days, or roughly 95 weeks.
co2_eq_emissions:
  emissions: 408.66249919578786
  energy_consumed: 1.0513516760803594
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 2.832
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: BERT base uncased trained on GooAQ triplets
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: gooaq dev
      type: gooaq-dev
    metrics:
    - type: cosine_accuracy@1
      value: 0.576
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7295
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7824
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8462
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.576
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.24316666666666664
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.15648
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08462
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.576
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7295
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7824
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8462
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7089171465159466
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6652589285714262
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6708962490161547
      name: Cosine Map@100
    - type: dot_accuracy@1
      value: 0.5263
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.6922
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.7494
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.8175
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.5263
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.23073333333333335
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.14987999999999999
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.08175
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.5263
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.6922
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.7494
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.8175
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.6696727448603579
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.622603690476188
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.6291100061102131
      name: Dot Map@100
---


# BERT base uncased trained on GooAQ triplets

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the [sentence-transformers/gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [sentence-transformers/gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: PeftModelForFeatureExtraction 

  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("tomaarsen/bert-base-uncased-gooaq-peft")

# Run inference

sentences = [

    'what health services are covered by medicare?',

    'Medicare Part A hospital insurance covers inpatient hospital care, skilled nursing facility, hospice, lab tests, surgery, home health care.',

    "Elephants have the longest gestation period of all mammals. These gentle giants' pregnancies last for more than a year and a half. The average gestation period of an elephant is about 640 to 660 days, or roughly 95 weeks.",

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 768]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `gooaq-dev`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.576      |

| cosine_accuracy@3   | 0.7295     |
| cosine_accuracy@5   | 0.7824     |

| cosine_accuracy@10  | 0.8462     |
| cosine_precision@1  | 0.576      |

| cosine_precision@3  | 0.2432     |
| cosine_precision@5  | 0.1565     |

| cosine_precision@10 | 0.0846     |
| cosine_recall@1     | 0.576      |

| cosine_recall@3     | 0.7295     |
| cosine_recall@5     | 0.7824     |

| cosine_recall@10    | 0.8462     |
| cosine_ndcg@10      | 0.7089     |

| cosine_mrr@10       | 0.6653     |
| **cosine_map@100**  | **0.6709** |

| dot_accuracy@1      | 0.5263     |

| dot_accuracy@3      | 0.6922     |

| dot_accuracy@5      | 0.7494     |

| dot_accuracy@10     | 0.8175     |

| dot_precision@1     | 0.5263     |

| dot_precision@3     | 0.2307     |

| dot_precision@5     | 0.1499     |

| dot_precision@10    | 0.0818     |

| dot_recall@1        | 0.5263     |

| dot_recall@3        | 0.6922     |

| dot_recall@5        | 0.7494     |

| dot_recall@10       | 0.8175     |

| dot_ndcg@10         | 0.6697     |

| dot_mrr@10          | 0.6226     |

| dot_map@100         | 0.6291     |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### sentence-transformers/gooaq



* Dataset: [sentence-transformers/gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)

* Size: 3,002,496 training samples

* Columns: <code>question</code> and <code>answer</code>

* Approximate statistics based on the first 1000 samples:

  |         | question                                                                          | answer                                                                              |

  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|

  | type    | string                                                                            | string                                                                              |

  | details | <ul><li>min: 8 tokens</li><li>mean: 11.84 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 60.69 tokens</li><li>max: 149 tokens</li></ul> |

* Samples:

  | question                                                                 | answer                                                                                                                                                                                                                                                                                              |

  |:-------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>can dogs get pregnant when on their period?</code>                 | <code>2. Female dogs can only get pregnant when they're in heat. Some females will show physical signs of readiness – their discharge will lighten in color, and they will “flag,” or lift their tail up and to the side.</code>                                                                    |

  | <code>are there different forms of als?</code>                           | <code>['Sporadic ALS is the most common form. It affects up to 95% of people with the disease. Sporadic means it happens sometimes without a clear cause.', 'Familial ALS (FALS) runs in families. About 5% to 10% of people with ALS have this type. FALS is caused by changes to a gene.']</code> |

  | <code>what is the difference between stayman and jacoby transfer?</code> | <code>1. The Stayman Convention is used only with a 4-Card Major suit looking for a 4-Card Major suit fit. Jacoby Transfer bids are used with a 5-Card suit looking for a 3-Card fit.</code>                                                                                                        |

* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:

  ```json

  {

      "scale": 20.0,

      "similarity_fct": "cos_sim"

  }

  ```



### Evaluation Dataset



#### sentence-transformers/gooaq



* Dataset: [sentence-transformers/gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)

* Size: 10,000 evaluation samples

* Columns: <code>question</code> and <code>answer</code>

* Approximate statistics based on the first 1000 samples:

  |         | question                                                                          | answer                                                                              |

  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|

  | type    | string                                                                            | string                                                                              |

  | details | <ul><li>min: 8 tokens</li><li>mean: 12.01 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 61.37 tokens</li><li>max: 138 tokens</li></ul> |

* Samples:

  | question                                             | answer                                                                                                                                                                                                                                                                                                                          |

  |:-----------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>is there a season 5 animal kingdom?</code>     | <code>the good news for the fans is that the season five was confirmed by TNT in July, 2019. The season five of Animal Kingdom was expected to release in May, 2020.</code>                                                                                                                                                     |

  | <code>what are cmos voltage levels?</code>           | <code>CMOS gate circuits have input and output signal specifications that are quite different from TTL. For a CMOS gate operating at a power supply voltage of 5 volts, the acceptable input signal voltages range from 0 volts to 1.5 volts for a “low” logic state, and 3.5 volts to 5 volts for a “high” logic state.</code> |

  | <code>dangers of drinking coke when pregnant?</code> | <code>Drinking it during pregnancy was linked to poorer fine motor, visual, spatial and visual motor abilities in early childhood (around age 3). By mid-childhood (age 7), kids whose moms drank diet sodas while pregnant had poorer verbal abilities, the study findings reported.</code>                                    |

* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:

  ```json

  {

      "scale": 20.0,

      "similarity_fct": "cos_sim"

  }

  ```



### Training Hyperparameters

#### Non-Default Hyperparameters



- `eval_strategy`: steps

- `per_device_train_batch_size`: 128

- `per_device_eval_batch_size`: 128

- `learning_rate`: 2e-05

- `num_train_epochs`: 1

- `warmup_ratio`: 0.1

- `bf16`: True

- `batch_sampler`: no_duplicates



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False

- `eval_strategy`: steps

- `prediction_loss_only`: True

- `per_device_train_batch_size`: 128

- `per_device_eval_batch_size`: 128

- `per_gpu_train_batch_size`: None

- `per_gpu_eval_batch_size`: None

- `gradient_accumulation_steps`: 1

- `eval_accumulation_steps`: None

- `learning_rate`: 2e-05

- `weight_decay`: 0.0

- `adam_beta1`: 0.9

- `adam_beta2`: 0.999

- `adam_epsilon`: 1e-08

- `max_grad_norm`: 1.0

- `num_train_epochs`: 1

- `max_steps`: -1

- `lr_scheduler_type`: linear

- `lr_scheduler_kwargs`: {}

- `warmup_ratio`: 0.1

- `warmup_steps`: 0

- `log_level`: passive

- `log_level_replica`: warning

- `log_on_each_node`: True

- `logging_nan_inf_filter`: True

- `save_safetensors`: True

- `save_on_each_node`: False

- `save_only_model`: False

- `restore_callback_states_from_checkpoint`: False

- `no_cuda`: False

- `use_cpu`: False

- `use_mps_device`: False

- `seed`: 42

- `data_seed`: None

- `jit_mode_eval`: False

- `use_ipex`: False

- `bf16`: True

- `fp16`: False

- `fp16_opt_level`: O1

- `half_precision_backend`: auto

- `bf16_full_eval`: False

- `fp16_full_eval`: False

- `tf32`: None

- `local_rank`: 0

- `ddp_backend`: None

- `tpu_num_cores`: None

- `tpu_metrics_debug`: False

- `debug`: []

- `dataloader_drop_last`: False

- `dataloader_num_workers`: 0

- `dataloader_prefetch_factor`: None

- `past_index`: -1

- `disable_tqdm`: False

- `remove_unused_columns`: True

- `label_names`: None

- `load_best_model_at_end`: False

- `ignore_data_skip`: False

- `fsdp`: []

- `fsdp_min_num_params`: 0

- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None

- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}

- `deepspeed`: None

- `label_smoothing_factor`: 0.0

- `optim`: adamw_torch

- `optim_args`: None

- `adafactor`: False

- `group_by_length`: False

- `length_column_name`: length

- `ddp_find_unused_parameters`: None

- `ddp_bucket_cap_mb`: None

- `ddp_broadcast_buffers`: False

- `dataloader_pin_memory`: True

- `dataloader_persistent_workers`: False

- `skip_memory_metrics`: True

- `use_legacy_prediction_loop`: False

- `push_to_hub`: False

- `resume_from_checkpoint`: None

- `hub_model_id`: None

- `hub_strategy`: every_save

- `hub_private_repo`: False

- `hub_always_push`: False

- `gradient_checkpointing`: False

- `gradient_checkpointing_kwargs`: None

- `include_inputs_for_metrics`: False

- `eval_do_concat_batches`: True

- `fp16_backend`: auto

- `push_to_hub_model_id`: None

- `push_to_hub_organization`: None

- `mp_parameters`: 

- `auto_find_batch_size`: False

- `full_determinism`: False

- `torchdynamo`: None

- `ray_scope`: last

- `ddp_timeout`: 1800

- `torch_compile`: False

- `torch_compile_backend`: None

- `torch_compile_mode`: None

- `dispatch_batches`: None

- `split_batches`: None

- `include_tokens_per_second`: False

- `include_num_input_tokens_seen`: False

- `neftune_noise_alpha`: None

- `optim_target_modules`: None

- `batch_eval_metrics`: False

- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional



</details>



### Training Logs

| Epoch  | Step  | Training Loss | loss   | gooaq-dev_cosine_map@100 |

|:------:|:-----:|:-------------:|:------:|:------------------------:|

| 0      | 0     | -             | -      | 0.2017                   |

| 0.0000 | 1     | 2.584         | -      | -                        |

| 0.0213 | 500   | 2.4164        | -      | -                        |

| 0.0426 | 1000  | 1.1421        | -      | -                        |

| 0.0639 | 1500  | 0.5215        | -      | -                        |

| 0.0853 | 2000  | 0.3645        | 0.2763 | 0.6087                   |

| 0.1066 | 2500  | 0.3046        | -      | -                        |

| 0.1279 | 3000  | 0.2782        | -      | -                        |

| 0.1492 | 3500  | 0.2601        | -      | -                        |

| 0.1705 | 4000  | 0.2457        | 0.2013 | 0.6396                   |

| 0.1918 | 4500  | 0.2363        | -      | -                        |

| 0.2132 | 5000  | 0.2291        | -      | -                        |

| 0.2345 | 5500  | 0.2217        | -      | -                        |

| 0.2558 | 6000  | 0.2137        | 0.1770 | 0.6521                   |

| 0.2771 | 6500  | 0.215         | -      | -                        |

| 0.2984 | 7000  | 0.2057        | -      | -                        |

| 0.3197 | 7500  | 0.198         | -      | -                        |

| 0.3410 | 8000  | 0.196         | 0.1626 | 0.6594                   |

| 0.3624 | 8500  | 0.1938        | -      | -                        |

| 0.3837 | 9000  | 0.195         | -      | -                        |

| 0.4050 | 9500  | 0.1895        | -      | -                        |

| 0.4263 | 10000 | 0.186         | 0.1542 | 0.6628                   |

| 0.4476 | 10500 | 0.1886        | -      | -                        |

| 0.4689 | 11000 | 0.1835        | -      | -                        |

| 0.4903 | 11500 | 0.1825        | -      | -                        |

| 0.5116 | 12000 | 0.1804        | 0.1484 | 0.6638                   |

| 0.5329 | 12500 | 0.176         | -      | -                        |

| 0.5542 | 13000 | 0.1825        | -      | -                        |

| 0.5755 | 13500 | 0.1785        | -      | -                        |

| 0.5968 | 14000 | 0.1766        | 0.1436 | 0.6672                   |

| 0.6182 | 14500 | 0.1718        | -      | -                        |

| 0.6395 | 15000 | 0.1717        | -      | -                        |

| 0.6608 | 15500 | 0.1674        | -      | -                        |

| 0.6821 | 16000 | 0.1691        | 0.1406 | 0.6704                   |

| 0.7034 | 16500 | 0.1705        | -      | -                        |

| 0.7247 | 17000 | 0.1693        | -      | -                        |

| 0.7460 | 17500 | 0.166         | -      | -                        |

| 0.7674 | 18000 | 0.1676        | 0.1385 | 0.6721                   |

| 0.7887 | 18500 | 0.1666        | -      | -                        |

| 0.8100 | 19000 | 0.1658        | -      | -                        |

| 0.8313 | 19500 | 0.1682        | -      | -                        |

| 0.8526 | 20000 | 0.1639        | 0.1370 | 0.6705                   |

| 0.8739 | 20500 | 0.1711        | -      | -                        |

| 0.8953 | 21000 | 0.1667        | -      | -                        |

| 0.9166 | 21500 | 0.165         | -      | -                        |

| 0.9379 | 22000 | 0.1658        | 0.1356 | 0.6711                   |

| 0.9592 | 22500 | 0.1665        | -      | -                        |

| 0.9805 | 23000 | 0.1636        | -      | -                        |

| 1.0    | 23457 | -             | -      | 0.6709                   |





### Environmental Impact

Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).

- **Energy Consumed**: 1.051 kWh

- **Carbon Emitted**: 0.409 kg of CO2

- **Hours Used**: 2.832 hours



### Training Hardware

- **On Cloud**: No

- **GPU Model**: 1 x NVIDIA GeForce RTX 3090

- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K

- **RAM Size**: 31.78 GB



### Framework Versions

- Python: 3.11.6

- Sentence Transformers: 3.1.0.dev0

- Transformers: 4.41.2

- PyTorch: 2.3.0+cu121

- Accelerate: 0.31.0

- Datasets: 2.20.0

- Tokenizers: 0.19.1



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### MultipleNegativesRankingLoss

```bibtex

@misc{henderson2017efficient,

    title={Efficient Natural Language Response Suggestion for Smart Reply}, 

    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},

    year={2017},

    eprint={1705.00652},

    archivePrefix={arXiv},

    primaryClass={cs.CL}

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->