Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +664 -0
- adapter_config.json +29 -0
- adapter_model.safetensors +3 -0
- config_sentence_transformers.json +10 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +55 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,664 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: google-bert/bert-base-uncased
|
3 |
+
datasets:
|
4 |
+
- sentence-transformers/gooaq
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
library_name: sentence-transformers
|
8 |
+
license: apache-2.0
|
9 |
+
metrics:
|
10 |
+
- cosine_accuracy@1
|
11 |
+
- cosine_accuracy@3
|
12 |
+
- cosine_accuracy@5
|
13 |
+
- cosine_accuracy@10
|
14 |
+
- cosine_precision@1
|
15 |
+
- cosine_precision@3
|
16 |
+
- cosine_precision@5
|
17 |
+
- cosine_precision@10
|
18 |
+
- cosine_recall@1
|
19 |
+
- cosine_recall@3
|
20 |
+
- cosine_recall@5
|
21 |
+
- cosine_recall@10
|
22 |
+
- cosine_ndcg@10
|
23 |
+
- cosine_mrr@10
|
24 |
+
- cosine_map@100
|
25 |
+
- dot_accuracy@1
|
26 |
+
- dot_accuracy@3
|
27 |
+
- dot_accuracy@5
|
28 |
+
- dot_accuracy@10
|
29 |
+
- dot_precision@1
|
30 |
+
- dot_precision@3
|
31 |
+
- dot_precision@5
|
32 |
+
- dot_precision@10
|
33 |
+
- dot_recall@1
|
34 |
+
- dot_recall@3
|
35 |
+
- dot_recall@5
|
36 |
+
- dot_recall@10
|
37 |
+
- dot_ndcg@10
|
38 |
+
- dot_mrr@10
|
39 |
+
- dot_map@100
|
40 |
+
pipeline_tag: sentence-similarity
|
41 |
+
tags:
|
42 |
+
- sentence-transformers
|
43 |
+
- sentence-similarity
|
44 |
+
- feature-extraction
|
45 |
+
- generated_from_trainer
|
46 |
+
- dataset_size:3002496
|
47 |
+
- loss:MultipleNegativesRankingLoss
|
48 |
+
widget:
|
49 |
+
- source_sentence: extreme old age is called?
|
50 |
+
sentences:
|
51 |
+
- The organic process of ageing is called senescence, the medical study of the aging
|
52 |
+
process is called gerontology, and the study of diseases that afflict the elderly
|
53 |
+
is called geriatrics. ... Old age is not a definite biological stage, as the chronological
|
54 |
+
age denoted as "old age" varies culturally and historically.
|
55 |
+
- The syllabus is described as the summary of the topics covered or units to be
|
56 |
+
taught in the particular subject. Curriculum refers to the overall content, taught
|
57 |
+
in an educational system or a course. ... Syllabus is descriptive in nature, but
|
58 |
+
the curriculum is prescriptive. Syllabus is set for a particular subject.
|
59 |
+
- Keep records for 3 years from the date you filed your original return or 2 years
|
60 |
+
from the date you paid the tax, whichever is later, if you file a claim for credit
|
61 |
+
or refund after you file your return. Keep records for 7 years if you file a claim
|
62 |
+
for a loss from worthless securities or bad debt deduction.
|
63 |
+
- source_sentence: has or as when to use?
|
64 |
+
sentences:
|
65 |
+
- 'Re: Has or as As is an adverb used in comparisons to refer to the extent or degree
|
66 |
+
of something; a conjunction 1 used to indicate simultaneous occurrence. 2 used
|
67 |
+
to indicate by comparison the way that something happens.'
|
68 |
+
- Go through their posts, likes, comments, and followers to see if the suspect's
|
69 |
+
username appears. If the user's name appears, click on it. If you click on the
|
70 |
+
user's profile and are unable to see their content, even though it says they have
|
71 |
+
a number of posts at the top of their profile, then they have blocked you.
|
72 |
+
- There's just a 2.6% + $0.30 fee on any portion funded by your credit or debit
|
73 |
+
card.
|
74 |
+
- source_sentence: how many inches of snow is good for snowboarding?
|
75 |
+
sentences:
|
76 |
+
- All kinds of tomato paste come with a best-by date. Like other condiments, such
|
77 |
+
as bbq sauce, the unopened paste will easily last months past the date on the
|
78 |
+
label.
|
79 |
+
- Data Storage Data in an SD card is stored on a series of electronic components
|
80 |
+
called NAND chips. These chips allow data to be written and stored on the SD card.
|
81 |
+
As the chips have no moving parts, data can be transferred from the cards quickly,
|
82 |
+
far exceeding the speeds available to CD or hard-drive media.
|
83 |
+
- In these areas, as little as 2-4 inches of snow may be sufficient. Other pistes,
|
84 |
+
however, may traverse uneven, rocky terrain. In these areas, several inches to
|
85 |
+
several feet may be necessary to cover the rocky surface. Even more important
|
86 |
+
than the amount of snowfall is the amount of snow that is retained on the slopes.
|
87 |
+
- source_sentence: is it normal to have a period after not having one for 8 months?
|
88 |
+
sentences:
|
89 |
+
- It is not normal to bleed or spot 12 months or more after your last period. Bleeding
|
90 |
+
after menopause is usually a sign of a minor health problem but can sometimes
|
91 |
+
be an early sign of more serious disease.
|
92 |
+
- '[''What are your recruiting needs for my class? ... '', ''What are the next steps
|
93 |
+
in the recruiting process with your program? ... '', ''What is your recruiting
|
94 |
+
timeline? ... '', ''What does a typical day or week look like for a player during
|
95 |
+
the season? ... '', ''What are the off-season expectations for a player? ... '',
|
96 |
+
''What are the values of your program?'']'
|
97 |
+
- Registered retirement savings plans (RRSP) and registered pension plans (RPP)
|
98 |
+
are both retirement savings plans that are registered with the Canada Revenue
|
99 |
+
Agency (CRA). RRSPs are individual retirement plans, while RPPs are plans established
|
100 |
+
by companies to provide pensions to their employees.
|
101 |
+
- source_sentence: what health services are covered by medicare?
|
102 |
+
sentences:
|
103 |
+
- Medicare Part A hospital insurance covers inpatient hospital care, skilled nursing
|
104 |
+
facility, hospice, lab tests, surgery, home health care.
|
105 |
+
- Meiocytes are the diploid cells which undergo meiosis to produce gametes. They
|
106 |
+
are also known as gamete mother cells. The chromosome number in diploid cells
|
107 |
+
of onion is 16. So meiocytes have 16 chromosomes.
|
108 |
+
- Elephants have the longest gestation period of all mammals. These gentle giants'
|
109 |
+
pregnancies last for more than a year and a half. The average gestation period
|
110 |
+
of an elephant is about 640 to 660 days, or roughly 95 weeks.
|
111 |
+
co2_eq_emissions:
|
112 |
+
emissions: 408.66249919578786
|
113 |
+
energy_consumed: 1.0513516760803594
|
114 |
+
source: codecarbon
|
115 |
+
training_type: fine-tuning
|
116 |
+
on_cloud: false
|
117 |
+
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
118 |
+
ram_total_size: 31.777088165283203
|
119 |
+
hours_used: 2.832
|
120 |
+
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
121 |
+
model-index:
|
122 |
+
- name: BERT base uncased trained on GooAQ triplets
|
123 |
+
results:
|
124 |
+
- task:
|
125 |
+
type: information-retrieval
|
126 |
+
name: Information Retrieval
|
127 |
+
dataset:
|
128 |
+
name: gooaq dev
|
129 |
+
type: gooaq-dev
|
130 |
+
metrics:
|
131 |
+
- type: cosine_accuracy@1
|
132 |
+
value: 0.576
|
133 |
+
name: Cosine Accuracy@1
|
134 |
+
- type: cosine_accuracy@3
|
135 |
+
value: 0.7295
|
136 |
+
name: Cosine Accuracy@3
|
137 |
+
- type: cosine_accuracy@5
|
138 |
+
value: 0.7824
|
139 |
+
name: Cosine Accuracy@5
|
140 |
+
- type: cosine_accuracy@10
|
141 |
+
value: 0.8462
|
142 |
+
name: Cosine Accuracy@10
|
143 |
+
- type: cosine_precision@1
|
144 |
+
value: 0.576
|
145 |
+
name: Cosine Precision@1
|
146 |
+
- type: cosine_precision@3
|
147 |
+
value: 0.24316666666666664
|
148 |
+
name: Cosine Precision@3
|
149 |
+
- type: cosine_precision@5
|
150 |
+
value: 0.15648
|
151 |
+
name: Cosine Precision@5
|
152 |
+
- type: cosine_precision@10
|
153 |
+
value: 0.08462
|
154 |
+
name: Cosine Precision@10
|
155 |
+
- type: cosine_recall@1
|
156 |
+
value: 0.576
|
157 |
+
name: Cosine Recall@1
|
158 |
+
- type: cosine_recall@3
|
159 |
+
value: 0.7295
|
160 |
+
name: Cosine Recall@3
|
161 |
+
- type: cosine_recall@5
|
162 |
+
value: 0.7824
|
163 |
+
name: Cosine Recall@5
|
164 |
+
- type: cosine_recall@10
|
165 |
+
value: 0.8462
|
166 |
+
name: Cosine Recall@10
|
167 |
+
- type: cosine_ndcg@10
|
168 |
+
value: 0.7089171465159466
|
169 |
+
name: Cosine Ndcg@10
|
170 |
+
- type: cosine_mrr@10
|
171 |
+
value: 0.6652589285714262
|
172 |
+
name: Cosine Mrr@10
|
173 |
+
- type: cosine_map@100
|
174 |
+
value: 0.6708962490161547
|
175 |
+
name: Cosine Map@100
|
176 |
+
- type: dot_accuracy@1
|
177 |
+
value: 0.5263
|
178 |
+
name: Dot Accuracy@1
|
179 |
+
- type: dot_accuracy@3
|
180 |
+
value: 0.6922
|
181 |
+
name: Dot Accuracy@3
|
182 |
+
- type: dot_accuracy@5
|
183 |
+
value: 0.7494
|
184 |
+
name: Dot Accuracy@5
|
185 |
+
- type: dot_accuracy@10
|
186 |
+
value: 0.8175
|
187 |
+
name: Dot Accuracy@10
|
188 |
+
- type: dot_precision@1
|
189 |
+
value: 0.5263
|
190 |
+
name: Dot Precision@1
|
191 |
+
- type: dot_precision@3
|
192 |
+
value: 0.23073333333333335
|
193 |
+
name: Dot Precision@3
|
194 |
+
- type: dot_precision@5
|
195 |
+
value: 0.14987999999999999
|
196 |
+
name: Dot Precision@5
|
197 |
+
- type: dot_precision@10
|
198 |
+
value: 0.08175
|
199 |
+
name: Dot Precision@10
|
200 |
+
- type: dot_recall@1
|
201 |
+
value: 0.5263
|
202 |
+
name: Dot Recall@1
|
203 |
+
- type: dot_recall@3
|
204 |
+
value: 0.6922
|
205 |
+
name: Dot Recall@3
|
206 |
+
- type: dot_recall@5
|
207 |
+
value: 0.7494
|
208 |
+
name: Dot Recall@5
|
209 |
+
- type: dot_recall@10
|
210 |
+
value: 0.8175
|
211 |
+
name: Dot Recall@10
|
212 |
+
- type: dot_ndcg@10
|
213 |
+
value: 0.6696727448603579
|
214 |
+
name: Dot Ndcg@10
|
215 |
+
- type: dot_mrr@10
|
216 |
+
value: 0.622603690476188
|
217 |
+
name: Dot Mrr@10
|
218 |
+
- type: dot_map@100
|
219 |
+
value: 0.6291100061102131
|
220 |
+
name: Dot Map@100
|
221 |
+
---
|
222 |
+
|
223 |
+
# BERT base uncased trained on GooAQ triplets
|
224 |
+
|
225 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the [sentence-transformers/gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
226 |
+
|
227 |
+
## Model Details
|
228 |
+
|
229 |
+
### Model Description
|
230 |
+
- **Model Type:** Sentence Transformer
|
231 |
+
- **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 -->
|
232 |
+
- **Maximum Sequence Length:** 512 tokens
|
233 |
+
- **Output Dimensionality:** 768 tokens
|
234 |
+
- **Similarity Function:** Cosine Similarity
|
235 |
+
- **Training Dataset:**
|
236 |
+
- [sentence-transformers/gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
|
237 |
+
- **Language:** en
|
238 |
+
- **License:** apache-2.0
|
239 |
+
|
240 |
+
### Model Sources
|
241 |
+
|
242 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
243 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
244 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
245 |
+
|
246 |
+
### Full Model Architecture
|
247 |
+
|
248 |
+
```
|
249 |
+
SentenceTransformer(
|
250 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: PeftModelForFeatureExtraction
|
251 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
252 |
+
)
|
253 |
+
```
|
254 |
+
|
255 |
+
## Usage
|
256 |
+
|
257 |
+
### Direct Usage (Sentence Transformers)
|
258 |
+
|
259 |
+
First install the Sentence Transformers library:
|
260 |
+
|
261 |
+
```bash
|
262 |
+
pip install -U sentence-transformers
|
263 |
+
```
|
264 |
+
|
265 |
+
Then you can load this model and run inference.
|
266 |
+
```python
|
267 |
+
from sentence_transformers import SentenceTransformer
|
268 |
+
|
269 |
+
# Download from the 🤗 Hub
|
270 |
+
model = SentenceTransformer("tomaarsen/bert-base-uncased-gooaq-peft")
|
271 |
+
# Run inference
|
272 |
+
sentences = [
|
273 |
+
'what health services are covered by medicare?',
|
274 |
+
'Medicare Part A hospital insurance covers inpatient hospital care, skilled nursing facility, hospice, lab tests, surgery, home health care.',
|
275 |
+
"Elephants have the longest gestation period of all mammals. These gentle giants' pregnancies last for more than a year and a half. The average gestation period of an elephant is about 640 to 660 days, or roughly 95 weeks.",
|
276 |
+
]
|
277 |
+
embeddings = model.encode(sentences)
|
278 |
+
print(embeddings.shape)
|
279 |
+
# [3, 768]
|
280 |
+
|
281 |
+
# Get the similarity scores for the embeddings
|
282 |
+
similarities = model.similarity(embeddings, embeddings)
|
283 |
+
print(similarities.shape)
|
284 |
+
# [3, 3]
|
285 |
+
```
|
286 |
+
|
287 |
+
<!--
|
288 |
+
### Direct Usage (Transformers)
|
289 |
+
|
290 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
291 |
+
|
292 |
+
</details>
|
293 |
+
-->
|
294 |
+
|
295 |
+
<!--
|
296 |
+
### Downstream Usage (Sentence Transformers)
|
297 |
+
|
298 |
+
You can finetune this model on your own dataset.
|
299 |
+
|
300 |
+
<details><summary>Click to expand</summary>
|
301 |
+
|
302 |
+
</details>
|
303 |
+
-->
|
304 |
+
|
305 |
+
<!--
|
306 |
+
### Out-of-Scope Use
|
307 |
+
|
308 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
309 |
+
-->
|
310 |
+
|
311 |
+
## Evaluation
|
312 |
+
|
313 |
+
### Metrics
|
314 |
+
|
315 |
+
#### Information Retrieval
|
316 |
+
* Dataset: `gooaq-dev`
|
317 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
318 |
+
|
319 |
+
| Metric | Value |
|
320 |
+
|:--------------------|:-----------|
|
321 |
+
| cosine_accuracy@1 | 0.576 |
|
322 |
+
| cosine_accuracy@3 | 0.7295 |
|
323 |
+
| cosine_accuracy@5 | 0.7824 |
|
324 |
+
| cosine_accuracy@10 | 0.8462 |
|
325 |
+
| cosine_precision@1 | 0.576 |
|
326 |
+
| cosine_precision@3 | 0.2432 |
|
327 |
+
| cosine_precision@5 | 0.1565 |
|
328 |
+
| cosine_precision@10 | 0.0846 |
|
329 |
+
| cosine_recall@1 | 0.576 |
|
330 |
+
| cosine_recall@3 | 0.7295 |
|
331 |
+
| cosine_recall@5 | 0.7824 |
|
332 |
+
| cosine_recall@10 | 0.8462 |
|
333 |
+
| cosine_ndcg@10 | 0.7089 |
|
334 |
+
| cosine_mrr@10 | 0.6653 |
|
335 |
+
| **cosine_map@100** | **0.6709** |
|
336 |
+
| dot_accuracy@1 | 0.5263 |
|
337 |
+
| dot_accuracy@3 | 0.6922 |
|
338 |
+
| dot_accuracy@5 | 0.7494 |
|
339 |
+
| dot_accuracy@10 | 0.8175 |
|
340 |
+
| dot_precision@1 | 0.5263 |
|
341 |
+
| dot_precision@3 | 0.2307 |
|
342 |
+
| dot_precision@5 | 0.1499 |
|
343 |
+
| dot_precision@10 | 0.0818 |
|
344 |
+
| dot_recall@1 | 0.5263 |
|
345 |
+
| dot_recall@3 | 0.6922 |
|
346 |
+
| dot_recall@5 | 0.7494 |
|
347 |
+
| dot_recall@10 | 0.8175 |
|
348 |
+
| dot_ndcg@10 | 0.6697 |
|
349 |
+
| dot_mrr@10 | 0.6226 |
|
350 |
+
| dot_map@100 | 0.6291 |
|
351 |
+
|
352 |
+
<!--
|
353 |
+
## Bias, Risks and Limitations
|
354 |
+
|
355 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
356 |
+
-->
|
357 |
+
|
358 |
+
<!--
|
359 |
+
### Recommendations
|
360 |
+
|
361 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
362 |
+
-->
|
363 |
+
|
364 |
+
## Training Details
|
365 |
+
|
366 |
+
### Training Dataset
|
367 |
+
|
368 |
+
#### sentence-transformers/gooaq
|
369 |
+
|
370 |
+
* Dataset: [sentence-transformers/gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
|
371 |
+
* Size: 3,002,496 training samples
|
372 |
+
* Columns: <code>question</code> and <code>answer</code>
|
373 |
+
* Approximate statistics based on the first 1000 samples:
|
374 |
+
| | question | answer |
|
375 |
+
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
376 |
+
| type | string | string |
|
377 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 11.84 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 60.69 tokens</li><li>max: 149 tokens</li></ul> |
|
378 |
+
* Samples:
|
379 |
+
| question | answer |
|
380 |
+
|:-------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
381 |
+
| <code>can dogs get pregnant when on their period?</code> | <code>2. Female dogs can only get pregnant when they're in heat. Some females will show physical signs of readiness – their discharge will lighten in color, and they will “flag,” or lift their tail up and to the side.</code> |
|
382 |
+
| <code>are there different forms of als?</code> | <code>['Sporadic ALS is the most common form. It affects up to 95% of people with the disease. Sporadic means it happens sometimes without a clear cause.', 'Familial ALS (FALS) runs in families. About 5% to 10% of people with ALS have this type. FALS is caused by changes to a gene.']</code> |
|
383 |
+
| <code>what is the difference between stayman and jacoby transfer?</code> | <code>1. The Stayman Convention is used only with a 4-Card Major suit looking for a 4-Card Major suit fit. Jacoby Transfer bids are used with a 5-Card suit looking for a 3-Card fit.</code> |
|
384 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
385 |
+
```json
|
386 |
+
{
|
387 |
+
"scale": 20.0,
|
388 |
+
"similarity_fct": "cos_sim"
|
389 |
+
}
|
390 |
+
```
|
391 |
+
|
392 |
+
### Evaluation Dataset
|
393 |
+
|
394 |
+
#### sentence-transformers/gooaq
|
395 |
+
|
396 |
+
* Dataset: [sentence-transformers/gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
|
397 |
+
* Size: 10,000 evaluation samples
|
398 |
+
* Columns: <code>question</code> and <code>answer</code>
|
399 |
+
* Approximate statistics based on the first 1000 samples:
|
400 |
+
| | question | answer |
|
401 |
+
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
402 |
+
| type | string | string |
|
403 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 12.01 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 61.37 tokens</li><li>max: 138 tokens</li></ul> |
|
404 |
+
* Samples:
|
405 |
+
| question | answer |
|
406 |
+
|:-----------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
407 |
+
| <code>is there a season 5 animal kingdom?</code> | <code>the good news for the fans is that the season five was confirmed by TNT in July, 2019. The season five of Animal Kingdom was expected to release in May, 2020.</code> |
|
408 |
+
| <code>what are cmos voltage levels?</code> | <code>CMOS gate circuits have input and output signal specifications that are quite different from TTL. For a CMOS gate operating at a power supply voltage of 5 volts, the acceptable input signal voltages range from 0 volts to 1.5 volts for a “low” logic state, and 3.5 volts to 5 volts for a “high” logic state.</code> |
|
409 |
+
| <code>dangers of drinking coke when pregnant?</code> | <code>Drinking it during pregnancy was linked to poorer fine motor, visual, spatial and visual motor abilities in early childhood (around age 3). By mid-childhood (age 7), kids whose moms drank diet sodas while pregnant had poorer verbal abilities, the study findings reported.</code> |
|
410 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
411 |
+
```json
|
412 |
+
{
|
413 |
+
"scale": 20.0,
|
414 |
+
"similarity_fct": "cos_sim"
|
415 |
+
}
|
416 |
+
```
|
417 |
+
|
418 |
+
### Training Hyperparameters
|
419 |
+
#### Non-Default Hyperparameters
|
420 |
+
|
421 |
+
- `eval_strategy`: steps
|
422 |
+
- `per_device_train_batch_size`: 128
|
423 |
+
- `per_device_eval_batch_size`: 128
|
424 |
+
- `learning_rate`: 2e-05
|
425 |
+
- `num_train_epochs`: 1
|
426 |
+
- `warmup_ratio`: 0.1
|
427 |
+
- `bf16`: True
|
428 |
+
- `batch_sampler`: no_duplicates
|
429 |
+
|
430 |
+
#### All Hyperparameters
|
431 |
+
<details><summary>Click to expand</summary>
|
432 |
+
|
433 |
+
- `overwrite_output_dir`: False
|
434 |
+
- `do_predict`: False
|
435 |
+
- `eval_strategy`: steps
|
436 |
+
- `prediction_loss_only`: True
|
437 |
+
- `per_device_train_batch_size`: 128
|
438 |
+
- `per_device_eval_batch_size`: 128
|
439 |
+
- `per_gpu_train_batch_size`: None
|
440 |
+
- `per_gpu_eval_batch_size`: None
|
441 |
+
- `gradient_accumulation_steps`: 1
|
442 |
+
- `eval_accumulation_steps`: None
|
443 |
+
- `learning_rate`: 2e-05
|
444 |
+
- `weight_decay`: 0.0
|
445 |
+
- `adam_beta1`: 0.9
|
446 |
+
- `adam_beta2`: 0.999
|
447 |
+
- `adam_epsilon`: 1e-08
|
448 |
+
- `max_grad_norm`: 1.0
|
449 |
+
- `num_train_epochs`: 1
|
450 |
+
- `max_steps`: -1
|
451 |
+
- `lr_scheduler_type`: linear
|
452 |
+
- `lr_scheduler_kwargs`: {}
|
453 |
+
- `warmup_ratio`: 0.1
|
454 |
+
- `warmup_steps`: 0
|
455 |
+
- `log_level`: passive
|
456 |
+
- `log_level_replica`: warning
|
457 |
+
- `log_on_each_node`: True
|
458 |
+
- `logging_nan_inf_filter`: True
|
459 |
+
- `save_safetensors`: True
|
460 |
+
- `save_on_each_node`: False
|
461 |
+
- `save_only_model`: False
|
462 |
+
- `restore_callback_states_from_checkpoint`: False
|
463 |
+
- `no_cuda`: False
|
464 |
+
- `use_cpu`: False
|
465 |
+
- `use_mps_device`: False
|
466 |
+
- `seed`: 42
|
467 |
+
- `data_seed`: None
|
468 |
+
- `jit_mode_eval`: False
|
469 |
+
- `use_ipex`: False
|
470 |
+
- `bf16`: True
|
471 |
+
- `fp16`: False
|
472 |
+
- `fp16_opt_level`: O1
|
473 |
+
- `half_precision_backend`: auto
|
474 |
+
- `bf16_full_eval`: False
|
475 |
+
- `fp16_full_eval`: False
|
476 |
+
- `tf32`: None
|
477 |
+
- `local_rank`: 0
|
478 |
+
- `ddp_backend`: None
|
479 |
+
- `tpu_num_cores`: None
|
480 |
+
- `tpu_metrics_debug`: False
|
481 |
+
- `debug`: []
|
482 |
+
- `dataloader_drop_last`: False
|
483 |
+
- `dataloader_num_workers`: 0
|
484 |
+
- `dataloader_prefetch_factor`: None
|
485 |
+
- `past_index`: -1
|
486 |
+
- `disable_tqdm`: False
|
487 |
+
- `remove_unused_columns`: True
|
488 |
+
- `label_names`: None
|
489 |
+
- `load_best_model_at_end`: False
|
490 |
+
- `ignore_data_skip`: False
|
491 |
+
- `fsdp`: []
|
492 |
+
- `fsdp_min_num_params`: 0
|
493 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
494 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
495 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
496 |
+
- `deepspeed`: None
|
497 |
+
- `label_smoothing_factor`: 0.0
|
498 |
+
- `optim`: adamw_torch
|
499 |
+
- `optim_args`: None
|
500 |
+
- `adafactor`: False
|
501 |
+
- `group_by_length`: False
|
502 |
+
- `length_column_name`: length
|
503 |
+
- `ddp_find_unused_parameters`: None
|
504 |
+
- `ddp_bucket_cap_mb`: None
|
505 |
+
- `ddp_broadcast_buffers`: False
|
506 |
+
- `dataloader_pin_memory`: True
|
507 |
+
- `dataloader_persistent_workers`: False
|
508 |
+
- `skip_memory_metrics`: True
|
509 |
+
- `use_legacy_prediction_loop`: False
|
510 |
+
- `push_to_hub`: False
|
511 |
+
- `resume_from_checkpoint`: None
|
512 |
+
- `hub_model_id`: None
|
513 |
+
- `hub_strategy`: every_save
|
514 |
+
- `hub_private_repo`: False
|
515 |
+
- `hub_always_push`: False
|
516 |
+
- `gradient_checkpointing`: False
|
517 |
+
- `gradient_checkpointing_kwargs`: None
|
518 |
+
- `include_inputs_for_metrics`: False
|
519 |
+
- `eval_do_concat_batches`: True
|
520 |
+
- `fp16_backend`: auto
|
521 |
+
- `push_to_hub_model_id`: None
|
522 |
+
- `push_to_hub_organization`: None
|
523 |
+
- `mp_parameters`:
|
524 |
+
- `auto_find_batch_size`: False
|
525 |
+
- `full_determinism`: False
|
526 |
+
- `torchdynamo`: None
|
527 |
+
- `ray_scope`: last
|
528 |
+
- `ddp_timeout`: 1800
|
529 |
+
- `torch_compile`: False
|
530 |
+
- `torch_compile_backend`: None
|
531 |
+
- `torch_compile_mode`: None
|
532 |
+
- `dispatch_batches`: None
|
533 |
+
- `split_batches`: None
|
534 |
+
- `include_tokens_per_second`: False
|
535 |
+
- `include_num_input_tokens_seen`: False
|
536 |
+
- `neftune_noise_alpha`: None
|
537 |
+
- `optim_target_modules`: None
|
538 |
+
- `batch_eval_metrics`: False
|
539 |
+
- `batch_sampler`: no_duplicates
|
540 |
+
- `multi_dataset_batch_sampler`: proportional
|
541 |
+
|
542 |
+
</details>
|
543 |
+
|
544 |
+
### Training Logs
|
545 |
+
| Epoch | Step | Training Loss | loss | gooaq-dev_cosine_map@100 |
|
546 |
+
|:------:|:-----:|:-------------:|:------:|:------------------------:|
|
547 |
+
| 0 | 0 | - | - | 0.2017 |
|
548 |
+
| 0.0000 | 1 | 2.584 | - | - |
|
549 |
+
| 0.0213 | 500 | 2.4164 | - | - |
|
550 |
+
| 0.0426 | 1000 | 1.1421 | - | - |
|
551 |
+
| 0.0639 | 1500 | 0.5215 | - | - |
|
552 |
+
| 0.0853 | 2000 | 0.3645 | 0.2763 | 0.6087 |
|
553 |
+
| 0.1066 | 2500 | 0.3046 | - | - |
|
554 |
+
| 0.1279 | 3000 | 0.2782 | - | - |
|
555 |
+
| 0.1492 | 3500 | 0.2601 | - | - |
|
556 |
+
| 0.1705 | 4000 | 0.2457 | 0.2013 | 0.6396 |
|
557 |
+
| 0.1918 | 4500 | 0.2363 | - | - |
|
558 |
+
| 0.2132 | 5000 | 0.2291 | - | - |
|
559 |
+
| 0.2345 | 5500 | 0.2217 | - | - |
|
560 |
+
| 0.2558 | 6000 | 0.2137 | 0.1770 | 0.6521 |
|
561 |
+
| 0.2771 | 6500 | 0.215 | - | - |
|
562 |
+
| 0.2984 | 7000 | 0.2057 | - | - |
|
563 |
+
| 0.3197 | 7500 | 0.198 | - | - |
|
564 |
+
| 0.3410 | 8000 | 0.196 | 0.1626 | 0.6594 |
|
565 |
+
| 0.3624 | 8500 | 0.1938 | - | - |
|
566 |
+
| 0.3837 | 9000 | 0.195 | - | - |
|
567 |
+
| 0.4050 | 9500 | 0.1895 | - | - |
|
568 |
+
| 0.4263 | 10000 | 0.186 | 0.1542 | 0.6628 |
|
569 |
+
| 0.4476 | 10500 | 0.1886 | - | - |
|
570 |
+
| 0.4689 | 11000 | 0.1835 | - | - |
|
571 |
+
| 0.4903 | 11500 | 0.1825 | - | - |
|
572 |
+
| 0.5116 | 12000 | 0.1804 | 0.1484 | 0.6638 |
|
573 |
+
| 0.5329 | 12500 | 0.176 | - | - |
|
574 |
+
| 0.5542 | 13000 | 0.1825 | - | - |
|
575 |
+
| 0.5755 | 13500 | 0.1785 | - | - |
|
576 |
+
| 0.5968 | 14000 | 0.1766 | 0.1436 | 0.6672 |
|
577 |
+
| 0.6182 | 14500 | 0.1718 | - | - |
|
578 |
+
| 0.6395 | 15000 | 0.1717 | - | - |
|
579 |
+
| 0.6608 | 15500 | 0.1674 | - | - |
|
580 |
+
| 0.6821 | 16000 | 0.1691 | 0.1406 | 0.6704 |
|
581 |
+
| 0.7034 | 16500 | 0.1705 | - | - |
|
582 |
+
| 0.7247 | 17000 | 0.1693 | - | - |
|
583 |
+
| 0.7460 | 17500 | 0.166 | - | - |
|
584 |
+
| 0.7674 | 18000 | 0.1676 | 0.1385 | 0.6721 |
|
585 |
+
| 0.7887 | 18500 | 0.1666 | - | - |
|
586 |
+
| 0.8100 | 19000 | 0.1658 | - | - |
|
587 |
+
| 0.8313 | 19500 | 0.1682 | - | - |
|
588 |
+
| 0.8526 | 20000 | 0.1639 | 0.1370 | 0.6705 |
|
589 |
+
| 0.8739 | 20500 | 0.1711 | - | - |
|
590 |
+
| 0.8953 | 21000 | 0.1667 | - | - |
|
591 |
+
| 0.9166 | 21500 | 0.165 | - | - |
|
592 |
+
| 0.9379 | 22000 | 0.1658 | 0.1356 | 0.6711 |
|
593 |
+
| 0.9592 | 22500 | 0.1665 | - | - |
|
594 |
+
| 0.9805 | 23000 | 0.1636 | - | - |
|
595 |
+
| 1.0 | 23457 | - | - | 0.6709 |
|
596 |
+
|
597 |
+
|
598 |
+
### Environmental Impact
|
599 |
+
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
600 |
+
- **Energy Consumed**: 1.051 kWh
|
601 |
+
- **Carbon Emitted**: 0.409 kg of CO2
|
602 |
+
- **Hours Used**: 2.832 hours
|
603 |
+
|
604 |
+
### Training Hardware
|
605 |
+
- **On Cloud**: No
|
606 |
+
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
|
607 |
+
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
|
608 |
+
- **RAM Size**: 31.78 GB
|
609 |
+
|
610 |
+
### Framework Versions
|
611 |
+
- Python: 3.11.6
|
612 |
+
- Sentence Transformers: 3.1.0.dev0
|
613 |
+
- Transformers: 4.41.2
|
614 |
+
- PyTorch: 2.3.0+cu121
|
615 |
+
- Accelerate: 0.31.0
|
616 |
+
- Datasets: 2.20.0
|
617 |
+
- Tokenizers: 0.19.1
|
618 |
+
|
619 |
+
## Citation
|
620 |
+
|
621 |
+
### BibTeX
|
622 |
+
|
623 |
+
#### Sentence Transformers
|
624 |
+
```bibtex
|
625 |
+
@inproceedings{reimers-2019-sentence-bert,
|
626 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
627 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
628 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
629 |
+
month = "11",
|
630 |
+
year = "2019",
|
631 |
+
publisher = "Association for Computational Linguistics",
|
632 |
+
url = "https://arxiv.org/abs/1908.10084",
|
633 |
+
}
|
634 |
+
```
|
635 |
+
|
636 |
+
#### MultipleNegativesRankingLoss
|
637 |
+
```bibtex
|
638 |
+
@misc{henderson2017efficient,
|
639 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
640 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
641 |
+
year={2017},
|
642 |
+
eprint={1705.00652},
|
643 |
+
archivePrefix={arXiv},
|
644 |
+
primaryClass={cs.CL}
|
645 |
+
}
|
646 |
+
```
|
647 |
+
|
648 |
+
<!--
|
649 |
+
## Glossary
|
650 |
+
|
651 |
+
*Clearly define terms in order to be accessible across audiences.*
|
652 |
+
-->
|
653 |
+
|
654 |
+
<!--
|
655 |
+
## Model Card Authors
|
656 |
+
|
657 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
658 |
+
-->
|
659 |
+
|
660 |
+
<!--
|
661 |
+
## Model Card Contact
|
662 |
+
|
663 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
664 |
+
-->
|
adapter_config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "bert-base-uncased",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"value",
|
24 |
+
"query"
|
25 |
+
],
|
26 |
+
"task_type": "FEATURE_EXTRACTION",
|
27 |
+
"use_dora": false,
|
28 |
+
"use_rslora": false
|
29 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49eb08b0ead3266ef4918519d5b903dbd1d6fb9a68051b4afc05114b85167029
|
3 |
+
size 1186088
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.0.dev0",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.3.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"model_max_length": 512,
|
49 |
+
"pad_token": "[PAD]",
|
50 |
+
"sep_token": "[SEP]",
|
51 |
+
"strip_accents": null,
|
52 |
+
"tokenize_chinese_chars": true,
|
53 |
+
"tokenizer_class": "BertTokenizer",
|
54 |
+
"unk_token": "[UNK]"
|
55 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|