tomaarsen HF staff commited on
Commit
02da0dc
1 Parent(s): 9f00790

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,664 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: google-bert/bert-base-uncased
3
+ datasets:
4
+ - sentence-transformers/gooaq
5
+ language:
6
+ - en
7
+ library_name: sentence-transformers
8
+ license: apache-2.0
9
+ metrics:
10
+ - cosine_accuracy@1
11
+ - cosine_accuracy@3
12
+ - cosine_accuracy@5
13
+ - cosine_accuracy@10
14
+ - cosine_precision@1
15
+ - cosine_precision@3
16
+ - cosine_precision@5
17
+ - cosine_precision@10
18
+ - cosine_recall@1
19
+ - cosine_recall@3
20
+ - cosine_recall@5
21
+ - cosine_recall@10
22
+ - cosine_ndcg@10
23
+ - cosine_mrr@10
24
+ - cosine_map@100
25
+ - dot_accuracy@1
26
+ - dot_accuracy@3
27
+ - dot_accuracy@5
28
+ - dot_accuracy@10
29
+ - dot_precision@1
30
+ - dot_precision@3
31
+ - dot_precision@5
32
+ - dot_precision@10
33
+ - dot_recall@1
34
+ - dot_recall@3
35
+ - dot_recall@5
36
+ - dot_recall@10
37
+ - dot_ndcg@10
38
+ - dot_mrr@10
39
+ - dot_map@100
40
+ pipeline_tag: sentence-similarity
41
+ tags:
42
+ - sentence-transformers
43
+ - sentence-similarity
44
+ - feature-extraction
45
+ - generated_from_trainer
46
+ - dataset_size:3002496
47
+ - loss:MultipleNegativesRankingLoss
48
+ widget:
49
+ - source_sentence: extreme old age is called?
50
+ sentences:
51
+ - The organic process of ageing is called senescence, the medical study of the aging
52
+ process is called gerontology, and the study of diseases that afflict the elderly
53
+ is called geriatrics. ... Old age is not a definite biological stage, as the chronological
54
+ age denoted as "old age" varies culturally and historically.
55
+ - The syllabus is described as the summary of the topics covered or units to be
56
+ taught in the particular subject. Curriculum refers to the overall content, taught
57
+ in an educational system or a course. ... Syllabus is descriptive in nature, but
58
+ the curriculum is prescriptive. Syllabus is set for a particular subject.
59
+ - Keep records for 3 years from the date you filed your original return or 2 years
60
+ from the date you paid the tax, whichever is later, if you file a claim for credit
61
+ or refund after you file your return. Keep records for 7 years if you file a claim
62
+ for a loss from worthless securities or bad debt deduction.
63
+ - source_sentence: has or as when to use?
64
+ sentences:
65
+ - 'Re: Has or as As is an adverb used in comparisons to refer to the extent or degree
66
+ of something; a conjunction 1 used to indicate simultaneous occurrence. 2 used
67
+ to indicate by comparison the way that something happens.'
68
+ - Go through their posts, likes, comments, and followers to see if the suspect's
69
+ username appears. If the user's name appears, click on it. If you click on the
70
+ user's profile and are unable to see their content, even though it says they have
71
+ a number of posts at the top of their profile, then they have blocked you.
72
+ - There's just a 2.6% + $0.30 fee on any portion funded by your credit or debit
73
+ card.
74
+ - source_sentence: how many inches of snow is good for snowboarding?
75
+ sentences:
76
+ - All kinds of tomato paste come with a best-by date. Like other condiments, such
77
+ as bbq sauce, the unopened paste will easily last months past the date on the
78
+ label.
79
+ - Data Storage Data in an SD card is stored on a series of electronic components
80
+ called NAND chips. These chips allow data to be written and stored on the SD card.
81
+ As the chips have no moving parts, data can be transferred from the cards quickly,
82
+ far exceeding the speeds available to CD or hard-drive media.
83
+ - In these areas, as little as 2-4 inches of snow may be sufficient. Other pistes,
84
+ however, may traverse uneven, rocky terrain. In these areas, several inches to
85
+ several feet may be necessary to cover the rocky surface. Even more important
86
+ than the amount of snowfall is the amount of snow that is retained on the slopes.
87
+ - source_sentence: is it normal to have a period after not having one for 8 months?
88
+ sentences:
89
+ - It is not normal to bleed or spot 12 months or more after your last period. Bleeding
90
+ after menopause is usually a sign of a minor health problem but can sometimes
91
+ be an early sign of more serious disease.
92
+ - '[''What are your recruiting needs for my class? ... '', ''What are the next steps
93
+ in the recruiting process with your program? ... '', ''What is your recruiting
94
+ timeline? ... '', ''What does a typical day or week look like for a player during
95
+ the season? ... '', ''What are the off-season expectations for a player? ... '',
96
+ ''What are the values of your program?'']'
97
+ - Registered retirement savings plans (RRSP) and registered pension plans (RPP)
98
+ are both retirement savings plans that are registered with the Canada Revenue
99
+ Agency (CRA). RRSPs are individual retirement plans, while RPPs are plans established
100
+ by companies to provide pensions to their employees.
101
+ - source_sentence: what health services are covered by medicare?
102
+ sentences:
103
+ - Medicare Part A hospital insurance covers inpatient hospital care, skilled nursing
104
+ facility, hospice, lab tests, surgery, home health care.
105
+ - Meiocytes are the diploid cells which undergo meiosis to produce gametes. They
106
+ are also known as gamete mother cells. The chromosome number in diploid cells
107
+ of onion is 16. So meiocytes have 16 chromosomes.
108
+ - Elephants have the longest gestation period of all mammals. These gentle giants'
109
+ pregnancies last for more than a year and a half. The average gestation period
110
+ of an elephant is about 640 to 660 days, or roughly 95 weeks.
111
+ co2_eq_emissions:
112
+ emissions: 408.66249919578786
113
+ energy_consumed: 1.0513516760803594
114
+ source: codecarbon
115
+ training_type: fine-tuning
116
+ on_cloud: false
117
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
118
+ ram_total_size: 31.777088165283203
119
+ hours_used: 2.832
120
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
121
+ model-index:
122
+ - name: BERT base uncased trained on GooAQ triplets
123
+ results:
124
+ - task:
125
+ type: information-retrieval
126
+ name: Information Retrieval
127
+ dataset:
128
+ name: gooaq dev
129
+ type: gooaq-dev
130
+ metrics:
131
+ - type: cosine_accuracy@1
132
+ value: 0.576
133
+ name: Cosine Accuracy@1
134
+ - type: cosine_accuracy@3
135
+ value: 0.7295
136
+ name: Cosine Accuracy@3
137
+ - type: cosine_accuracy@5
138
+ value: 0.7824
139
+ name: Cosine Accuracy@5
140
+ - type: cosine_accuracy@10
141
+ value: 0.8462
142
+ name: Cosine Accuracy@10
143
+ - type: cosine_precision@1
144
+ value: 0.576
145
+ name: Cosine Precision@1
146
+ - type: cosine_precision@3
147
+ value: 0.24316666666666664
148
+ name: Cosine Precision@3
149
+ - type: cosine_precision@5
150
+ value: 0.15648
151
+ name: Cosine Precision@5
152
+ - type: cosine_precision@10
153
+ value: 0.08462
154
+ name: Cosine Precision@10
155
+ - type: cosine_recall@1
156
+ value: 0.576
157
+ name: Cosine Recall@1
158
+ - type: cosine_recall@3
159
+ value: 0.7295
160
+ name: Cosine Recall@3
161
+ - type: cosine_recall@5
162
+ value: 0.7824
163
+ name: Cosine Recall@5
164
+ - type: cosine_recall@10
165
+ value: 0.8462
166
+ name: Cosine Recall@10
167
+ - type: cosine_ndcg@10
168
+ value: 0.7089171465159466
169
+ name: Cosine Ndcg@10
170
+ - type: cosine_mrr@10
171
+ value: 0.6652589285714262
172
+ name: Cosine Mrr@10
173
+ - type: cosine_map@100
174
+ value: 0.6708962490161547
175
+ name: Cosine Map@100
176
+ - type: dot_accuracy@1
177
+ value: 0.5263
178
+ name: Dot Accuracy@1
179
+ - type: dot_accuracy@3
180
+ value: 0.6922
181
+ name: Dot Accuracy@3
182
+ - type: dot_accuracy@5
183
+ value: 0.7494
184
+ name: Dot Accuracy@5
185
+ - type: dot_accuracy@10
186
+ value: 0.8175
187
+ name: Dot Accuracy@10
188
+ - type: dot_precision@1
189
+ value: 0.5263
190
+ name: Dot Precision@1
191
+ - type: dot_precision@3
192
+ value: 0.23073333333333335
193
+ name: Dot Precision@3
194
+ - type: dot_precision@5
195
+ value: 0.14987999999999999
196
+ name: Dot Precision@5
197
+ - type: dot_precision@10
198
+ value: 0.08175
199
+ name: Dot Precision@10
200
+ - type: dot_recall@1
201
+ value: 0.5263
202
+ name: Dot Recall@1
203
+ - type: dot_recall@3
204
+ value: 0.6922
205
+ name: Dot Recall@3
206
+ - type: dot_recall@5
207
+ value: 0.7494
208
+ name: Dot Recall@5
209
+ - type: dot_recall@10
210
+ value: 0.8175
211
+ name: Dot Recall@10
212
+ - type: dot_ndcg@10
213
+ value: 0.6696727448603579
214
+ name: Dot Ndcg@10
215
+ - type: dot_mrr@10
216
+ value: 0.622603690476188
217
+ name: Dot Mrr@10
218
+ - type: dot_map@100
219
+ value: 0.6291100061102131
220
+ name: Dot Map@100
221
+ ---
222
+
223
+ # BERT base uncased trained on GooAQ triplets
224
+
225
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the [sentence-transformers/gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
226
+
227
+ ## Model Details
228
+
229
+ ### Model Description
230
+ - **Model Type:** Sentence Transformer
231
+ - **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 -->
232
+ - **Maximum Sequence Length:** 512 tokens
233
+ - **Output Dimensionality:** 768 tokens
234
+ - **Similarity Function:** Cosine Similarity
235
+ - **Training Dataset:**
236
+ - [sentence-transformers/gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
237
+ - **Language:** en
238
+ - **License:** apache-2.0
239
+
240
+ ### Model Sources
241
+
242
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
243
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
244
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
245
+
246
+ ### Full Model Architecture
247
+
248
+ ```
249
+ SentenceTransformer(
250
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: PeftModelForFeatureExtraction
251
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
252
+ )
253
+ ```
254
+
255
+ ## Usage
256
+
257
+ ### Direct Usage (Sentence Transformers)
258
+
259
+ First install the Sentence Transformers library:
260
+
261
+ ```bash
262
+ pip install -U sentence-transformers
263
+ ```
264
+
265
+ Then you can load this model and run inference.
266
+ ```python
267
+ from sentence_transformers import SentenceTransformer
268
+
269
+ # Download from the 🤗 Hub
270
+ model = SentenceTransformer("tomaarsen/bert-base-uncased-gooaq-peft")
271
+ # Run inference
272
+ sentences = [
273
+ 'what health services are covered by medicare?',
274
+ 'Medicare Part A hospital insurance covers inpatient hospital care, skilled nursing facility, hospice, lab tests, surgery, home health care.',
275
+ "Elephants have the longest gestation period of all mammals. These gentle giants' pregnancies last for more than a year and a half. The average gestation period of an elephant is about 640 to 660 days, or roughly 95 weeks.",
276
+ ]
277
+ embeddings = model.encode(sentences)
278
+ print(embeddings.shape)
279
+ # [3, 768]
280
+
281
+ # Get the similarity scores for the embeddings
282
+ similarities = model.similarity(embeddings, embeddings)
283
+ print(similarities.shape)
284
+ # [3, 3]
285
+ ```
286
+
287
+ <!--
288
+ ### Direct Usage (Transformers)
289
+
290
+ <details><summary>Click to see the direct usage in Transformers</summary>
291
+
292
+ </details>
293
+ -->
294
+
295
+ <!--
296
+ ### Downstream Usage (Sentence Transformers)
297
+
298
+ You can finetune this model on your own dataset.
299
+
300
+ <details><summary>Click to expand</summary>
301
+
302
+ </details>
303
+ -->
304
+
305
+ <!--
306
+ ### Out-of-Scope Use
307
+
308
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
309
+ -->
310
+
311
+ ## Evaluation
312
+
313
+ ### Metrics
314
+
315
+ #### Information Retrieval
316
+ * Dataset: `gooaq-dev`
317
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
318
+
319
+ | Metric | Value |
320
+ |:--------------------|:-----------|
321
+ | cosine_accuracy@1 | 0.576 |
322
+ | cosine_accuracy@3 | 0.7295 |
323
+ | cosine_accuracy@5 | 0.7824 |
324
+ | cosine_accuracy@10 | 0.8462 |
325
+ | cosine_precision@1 | 0.576 |
326
+ | cosine_precision@3 | 0.2432 |
327
+ | cosine_precision@5 | 0.1565 |
328
+ | cosine_precision@10 | 0.0846 |
329
+ | cosine_recall@1 | 0.576 |
330
+ | cosine_recall@3 | 0.7295 |
331
+ | cosine_recall@5 | 0.7824 |
332
+ | cosine_recall@10 | 0.8462 |
333
+ | cosine_ndcg@10 | 0.7089 |
334
+ | cosine_mrr@10 | 0.6653 |
335
+ | **cosine_map@100** | **0.6709** |
336
+ | dot_accuracy@1 | 0.5263 |
337
+ | dot_accuracy@3 | 0.6922 |
338
+ | dot_accuracy@5 | 0.7494 |
339
+ | dot_accuracy@10 | 0.8175 |
340
+ | dot_precision@1 | 0.5263 |
341
+ | dot_precision@3 | 0.2307 |
342
+ | dot_precision@5 | 0.1499 |
343
+ | dot_precision@10 | 0.0818 |
344
+ | dot_recall@1 | 0.5263 |
345
+ | dot_recall@3 | 0.6922 |
346
+ | dot_recall@5 | 0.7494 |
347
+ | dot_recall@10 | 0.8175 |
348
+ | dot_ndcg@10 | 0.6697 |
349
+ | dot_mrr@10 | 0.6226 |
350
+ | dot_map@100 | 0.6291 |
351
+
352
+ <!--
353
+ ## Bias, Risks and Limitations
354
+
355
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
356
+ -->
357
+
358
+ <!--
359
+ ### Recommendations
360
+
361
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
362
+ -->
363
+
364
+ ## Training Details
365
+
366
+ ### Training Dataset
367
+
368
+ #### sentence-transformers/gooaq
369
+
370
+ * Dataset: [sentence-transformers/gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
371
+ * Size: 3,002,496 training samples
372
+ * Columns: <code>question</code> and <code>answer</code>
373
+ * Approximate statistics based on the first 1000 samples:
374
+ | | question | answer |
375
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
376
+ | type | string | string |
377
+ | details | <ul><li>min: 8 tokens</li><li>mean: 11.84 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 60.69 tokens</li><li>max: 149 tokens</li></ul> |
378
+ * Samples:
379
+ | question | answer |
380
+ |:-------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
381
+ | <code>can dogs get pregnant when on their period?</code> | <code>2. Female dogs can only get pregnant when they're in heat. Some females will show physical signs of readiness – their discharge will lighten in color, and they will “flag,” or lift their tail up and to the side.</code> |
382
+ | <code>are there different forms of als?</code> | <code>['Sporadic ALS is the most common form. It affects up to 95% of people with the disease. Sporadic means it happens sometimes without a clear cause.', 'Familial ALS (FALS) runs in families. About 5% to 10% of people with ALS have this type. FALS is caused by changes to a gene.']</code> |
383
+ | <code>what is the difference between stayman and jacoby transfer?</code> | <code>1. The Stayman Convention is used only with a 4-Card Major suit looking for a 4-Card Major suit fit. Jacoby Transfer bids are used with a 5-Card suit looking for a 3-Card fit.</code> |
384
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
385
+ ```json
386
+ {
387
+ "scale": 20.0,
388
+ "similarity_fct": "cos_sim"
389
+ }
390
+ ```
391
+
392
+ ### Evaluation Dataset
393
+
394
+ #### sentence-transformers/gooaq
395
+
396
+ * Dataset: [sentence-transformers/gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
397
+ * Size: 10,000 evaluation samples
398
+ * Columns: <code>question</code> and <code>answer</code>
399
+ * Approximate statistics based on the first 1000 samples:
400
+ | | question | answer |
401
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
402
+ | type | string | string |
403
+ | details | <ul><li>min: 8 tokens</li><li>mean: 12.01 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 61.37 tokens</li><li>max: 138 tokens</li></ul> |
404
+ * Samples:
405
+ | question | answer |
406
+ |:-----------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
407
+ | <code>is there a season 5 animal kingdom?</code> | <code>the good news for the fans is that the season five was confirmed by TNT in July, 2019. The season five of Animal Kingdom was expected to release in May, 2020.</code> |
408
+ | <code>what are cmos voltage levels?</code> | <code>CMOS gate circuits have input and output signal specifications that are quite different from TTL. For a CMOS gate operating at a power supply voltage of 5 volts, the acceptable input signal voltages range from 0 volts to 1.5 volts for a “low” logic state, and 3.5 volts to 5 volts for a “high” logic state.</code> |
409
+ | <code>dangers of drinking coke when pregnant?</code> | <code>Drinking it during pregnancy was linked to poorer fine motor, visual, spatial and visual motor abilities in early childhood (around age 3). By mid-childhood (age 7), kids whose moms drank diet sodas while pregnant had poorer verbal abilities, the study findings reported.</code> |
410
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
411
+ ```json
412
+ {
413
+ "scale": 20.0,
414
+ "similarity_fct": "cos_sim"
415
+ }
416
+ ```
417
+
418
+ ### Training Hyperparameters
419
+ #### Non-Default Hyperparameters
420
+
421
+ - `eval_strategy`: steps
422
+ - `per_device_train_batch_size`: 128
423
+ - `per_device_eval_batch_size`: 128
424
+ - `learning_rate`: 2e-05
425
+ - `num_train_epochs`: 1
426
+ - `warmup_ratio`: 0.1
427
+ - `bf16`: True
428
+ - `batch_sampler`: no_duplicates
429
+
430
+ #### All Hyperparameters
431
+ <details><summary>Click to expand</summary>
432
+
433
+ - `overwrite_output_dir`: False
434
+ - `do_predict`: False
435
+ - `eval_strategy`: steps
436
+ - `prediction_loss_only`: True
437
+ - `per_device_train_batch_size`: 128
438
+ - `per_device_eval_batch_size`: 128
439
+ - `per_gpu_train_batch_size`: None
440
+ - `per_gpu_eval_batch_size`: None
441
+ - `gradient_accumulation_steps`: 1
442
+ - `eval_accumulation_steps`: None
443
+ - `learning_rate`: 2e-05
444
+ - `weight_decay`: 0.0
445
+ - `adam_beta1`: 0.9
446
+ - `adam_beta2`: 0.999
447
+ - `adam_epsilon`: 1e-08
448
+ - `max_grad_norm`: 1.0
449
+ - `num_train_epochs`: 1
450
+ - `max_steps`: -1
451
+ - `lr_scheduler_type`: linear
452
+ - `lr_scheduler_kwargs`: {}
453
+ - `warmup_ratio`: 0.1
454
+ - `warmup_steps`: 0
455
+ - `log_level`: passive
456
+ - `log_level_replica`: warning
457
+ - `log_on_each_node`: True
458
+ - `logging_nan_inf_filter`: True
459
+ - `save_safetensors`: True
460
+ - `save_on_each_node`: False
461
+ - `save_only_model`: False
462
+ - `restore_callback_states_from_checkpoint`: False
463
+ - `no_cuda`: False
464
+ - `use_cpu`: False
465
+ - `use_mps_device`: False
466
+ - `seed`: 42
467
+ - `data_seed`: None
468
+ - `jit_mode_eval`: False
469
+ - `use_ipex`: False
470
+ - `bf16`: True
471
+ - `fp16`: False
472
+ - `fp16_opt_level`: O1
473
+ - `half_precision_backend`: auto
474
+ - `bf16_full_eval`: False
475
+ - `fp16_full_eval`: False
476
+ - `tf32`: None
477
+ - `local_rank`: 0
478
+ - `ddp_backend`: None
479
+ - `tpu_num_cores`: None
480
+ - `tpu_metrics_debug`: False
481
+ - `debug`: []
482
+ - `dataloader_drop_last`: False
483
+ - `dataloader_num_workers`: 0
484
+ - `dataloader_prefetch_factor`: None
485
+ - `past_index`: -1
486
+ - `disable_tqdm`: False
487
+ - `remove_unused_columns`: True
488
+ - `label_names`: None
489
+ - `load_best_model_at_end`: False
490
+ - `ignore_data_skip`: False
491
+ - `fsdp`: []
492
+ - `fsdp_min_num_params`: 0
493
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
494
+ - `fsdp_transformer_layer_cls_to_wrap`: None
495
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
496
+ - `deepspeed`: None
497
+ - `label_smoothing_factor`: 0.0
498
+ - `optim`: adamw_torch
499
+ - `optim_args`: None
500
+ - `adafactor`: False
501
+ - `group_by_length`: False
502
+ - `length_column_name`: length
503
+ - `ddp_find_unused_parameters`: None
504
+ - `ddp_bucket_cap_mb`: None
505
+ - `ddp_broadcast_buffers`: False
506
+ - `dataloader_pin_memory`: True
507
+ - `dataloader_persistent_workers`: False
508
+ - `skip_memory_metrics`: True
509
+ - `use_legacy_prediction_loop`: False
510
+ - `push_to_hub`: False
511
+ - `resume_from_checkpoint`: None
512
+ - `hub_model_id`: None
513
+ - `hub_strategy`: every_save
514
+ - `hub_private_repo`: False
515
+ - `hub_always_push`: False
516
+ - `gradient_checkpointing`: False
517
+ - `gradient_checkpointing_kwargs`: None
518
+ - `include_inputs_for_metrics`: False
519
+ - `eval_do_concat_batches`: True
520
+ - `fp16_backend`: auto
521
+ - `push_to_hub_model_id`: None
522
+ - `push_to_hub_organization`: None
523
+ - `mp_parameters`:
524
+ - `auto_find_batch_size`: False
525
+ - `full_determinism`: False
526
+ - `torchdynamo`: None
527
+ - `ray_scope`: last
528
+ - `ddp_timeout`: 1800
529
+ - `torch_compile`: False
530
+ - `torch_compile_backend`: None
531
+ - `torch_compile_mode`: None
532
+ - `dispatch_batches`: None
533
+ - `split_batches`: None
534
+ - `include_tokens_per_second`: False
535
+ - `include_num_input_tokens_seen`: False
536
+ - `neftune_noise_alpha`: None
537
+ - `optim_target_modules`: None
538
+ - `batch_eval_metrics`: False
539
+ - `batch_sampler`: no_duplicates
540
+ - `multi_dataset_batch_sampler`: proportional
541
+
542
+ </details>
543
+
544
+ ### Training Logs
545
+ | Epoch | Step | Training Loss | loss | gooaq-dev_cosine_map@100 |
546
+ |:------:|:-----:|:-------------:|:------:|:------------------------:|
547
+ | 0 | 0 | - | - | 0.2017 |
548
+ | 0.0000 | 1 | 2.584 | - | - |
549
+ | 0.0213 | 500 | 2.4164 | - | - |
550
+ | 0.0426 | 1000 | 1.1421 | - | - |
551
+ | 0.0639 | 1500 | 0.5215 | - | - |
552
+ | 0.0853 | 2000 | 0.3645 | 0.2763 | 0.6087 |
553
+ | 0.1066 | 2500 | 0.3046 | - | - |
554
+ | 0.1279 | 3000 | 0.2782 | - | - |
555
+ | 0.1492 | 3500 | 0.2601 | - | - |
556
+ | 0.1705 | 4000 | 0.2457 | 0.2013 | 0.6396 |
557
+ | 0.1918 | 4500 | 0.2363 | - | - |
558
+ | 0.2132 | 5000 | 0.2291 | - | - |
559
+ | 0.2345 | 5500 | 0.2217 | - | - |
560
+ | 0.2558 | 6000 | 0.2137 | 0.1770 | 0.6521 |
561
+ | 0.2771 | 6500 | 0.215 | - | - |
562
+ | 0.2984 | 7000 | 0.2057 | - | - |
563
+ | 0.3197 | 7500 | 0.198 | - | - |
564
+ | 0.3410 | 8000 | 0.196 | 0.1626 | 0.6594 |
565
+ | 0.3624 | 8500 | 0.1938 | - | - |
566
+ | 0.3837 | 9000 | 0.195 | - | - |
567
+ | 0.4050 | 9500 | 0.1895 | - | - |
568
+ | 0.4263 | 10000 | 0.186 | 0.1542 | 0.6628 |
569
+ | 0.4476 | 10500 | 0.1886 | - | - |
570
+ | 0.4689 | 11000 | 0.1835 | - | - |
571
+ | 0.4903 | 11500 | 0.1825 | - | - |
572
+ | 0.5116 | 12000 | 0.1804 | 0.1484 | 0.6638 |
573
+ | 0.5329 | 12500 | 0.176 | - | - |
574
+ | 0.5542 | 13000 | 0.1825 | - | - |
575
+ | 0.5755 | 13500 | 0.1785 | - | - |
576
+ | 0.5968 | 14000 | 0.1766 | 0.1436 | 0.6672 |
577
+ | 0.6182 | 14500 | 0.1718 | - | - |
578
+ | 0.6395 | 15000 | 0.1717 | - | - |
579
+ | 0.6608 | 15500 | 0.1674 | - | - |
580
+ | 0.6821 | 16000 | 0.1691 | 0.1406 | 0.6704 |
581
+ | 0.7034 | 16500 | 0.1705 | - | - |
582
+ | 0.7247 | 17000 | 0.1693 | - | - |
583
+ | 0.7460 | 17500 | 0.166 | - | - |
584
+ | 0.7674 | 18000 | 0.1676 | 0.1385 | 0.6721 |
585
+ | 0.7887 | 18500 | 0.1666 | - | - |
586
+ | 0.8100 | 19000 | 0.1658 | - | - |
587
+ | 0.8313 | 19500 | 0.1682 | - | - |
588
+ | 0.8526 | 20000 | 0.1639 | 0.1370 | 0.6705 |
589
+ | 0.8739 | 20500 | 0.1711 | - | - |
590
+ | 0.8953 | 21000 | 0.1667 | - | - |
591
+ | 0.9166 | 21500 | 0.165 | - | - |
592
+ | 0.9379 | 22000 | 0.1658 | 0.1356 | 0.6711 |
593
+ | 0.9592 | 22500 | 0.1665 | - | - |
594
+ | 0.9805 | 23000 | 0.1636 | - | - |
595
+ | 1.0 | 23457 | - | - | 0.6709 |
596
+
597
+
598
+ ### Environmental Impact
599
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
600
+ - **Energy Consumed**: 1.051 kWh
601
+ - **Carbon Emitted**: 0.409 kg of CO2
602
+ - **Hours Used**: 2.832 hours
603
+
604
+ ### Training Hardware
605
+ - **On Cloud**: No
606
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
607
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
608
+ - **RAM Size**: 31.78 GB
609
+
610
+ ### Framework Versions
611
+ - Python: 3.11.6
612
+ - Sentence Transformers: 3.1.0.dev0
613
+ - Transformers: 4.41.2
614
+ - PyTorch: 2.3.0+cu121
615
+ - Accelerate: 0.31.0
616
+ - Datasets: 2.20.0
617
+ - Tokenizers: 0.19.1
618
+
619
+ ## Citation
620
+
621
+ ### BibTeX
622
+
623
+ #### Sentence Transformers
624
+ ```bibtex
625
+ @inproceedings{reimers-2019-sentence-bert,
626
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
627
+ author = "Reimers, Nils and Gurevych, Iryna",
628
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
629
+ month = "11",
630
+ year = "2019",
631
+ publisher = "Association for Computational Linguistics",
632
+ url = "https://arxiv.org/abs/1908.10084",
633
+ }
634
+ ```
635
+
636
+ #### MultipleNegativesRankingLoss
637
+ ```bibtex
638
+ @misc{henderson2017efficient,
639
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
640
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
641
+ year={2017},
642
+ eprint={1705.00652},
643
+ archivePrefix={arXiv},
644
+ primaryClass={cs.CL}
645
+ }
646
+ ```
647
+
648
+ <!--
649
+ ## Glossary
650
+
651
+ *Clearly define terms in order to be accessible across audiences.*
652
+ -->
653
+
654
+ <!--
655
+ ## Model Card Authors
656
+
657
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
658
+ -->
659
+
660
+ <!--
661
+ ## Model Card Contact
662
+
663
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
664
+ -->
adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "bert-base-uncased",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "value",
24
+ "query"
25
+ ],
26
+ "task_type": "FEATURE_EXTRACTION",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49eb08b0ead3266ef4918519d5b903dbd1d6fb9a68051b4afc05114b85167029
3
+ size 1186088
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.0.dev0",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff