File size: 1,910 Bytes
757bc89
 
29392c3
 
 
 
 
77dd825
29392c3
757bc89
29392c3
 
 
 
77dd825
29392c3
77dd825
29392c3
9be7cca
 
29392c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77dd825
 
 
29392c3
 
 
77dd825
 
29392c3
 
 
77dd825
 
9be7cca
 
 
 
 
 
 
 
 
 
29392c3
 
 
 
 
77dd825
29392c3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: gpt2-sweep
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gpt2-sweep

This model is a fine-tuned version of [gpt2-large](https://huggingface.co/gpt2-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0808
- Accuracy: 0.8556

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2.294477077303931e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 2.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 2.4827        | 0.19  | 1000  | 2.4565          | 0.8520   |
| 2.6468        | 0.37  | 2000  | 2.3303          | 0.8530   |
| 2.5106        | 0.56  | 3000  | 2.2487          | 0.8537   |
| 2.0732        | 0.74  | 4000  | 2.2020          | 0.8541   |
| 2.159         | 0.93  | 5000  | 2.1594          | 0.8545   |
| 1.856         | 1.12  | 6000  | 2.1518          | 0.8548   |
| 1.9138        | 1.3   | 7000  | 2.1261          | 0.8551   |
| 1.8055        | 1.49  | 8000  | 2.1126          | 0.8552   |
| 2.0385        | 1.67  | 9000  | 2.1008          | 0.8554   |
| 1.9648        | 1.86  | 10000 | 2.0858          | 0.8555   |


### Framework versions

- Transformers 4.26.0
- Pytorch 2.0.0+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2