llm-jp-3-13b-it: A Fine-tuned model for ELYZA-tasks-100
Overview
This is a fine-tuned llm-jp-3-13b-it model for ELYZA-tasks-100. The model was trained on ELYZA-tasks-100 and the ichikara-instruction dataset.
Usage
Load the model and tokenizer with the following code:
from unsloth import FastLanguageModel
model_id = "tokutsu/llm-jp-3-13b-it"
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_id,
dtype=None,
load_in_4bit=True,
)
FastLanguageModel.for_inference(model)
prompt = """### ๆ็คบ
ไปไบใฎ็ฑๆใๅใๆปใใใใฎใขใคใใขใ5ใคๆใใฆใใ ใใใ
### ๅ็ญ
"""
inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
outputs = model.generate(**inputs,
max_new_tokens=512,
use_cache=True,
do_sample=False,
repetition_penalty=1.2)
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### ๅ็ญ')[-1]
Example Output
Here is an example of what the output would look like:
1. ไปไบใซ้ข้ฃใใ่ถฃๅณใๆใค: ่ถฃๅณใฏในใใฌใน่งฃๆถใใชใฉใใฏในๅนๆใใใใไปไบใธใฎใขใใใผใทใงใณใขใใใซใใคใชใใใพใใไพใใฐใใฌใผใใใณใฐใๅฅฝใใชใใชใใฃในใง่ฆณ่ๆค็ฉใ่ฒใฆใใใๆ็ใๅพๆใงใใใฐๅๅใจใฉใณใไผใใใใชใฉใ่ชๅใชใใฎไปไบใจใฎๆฅ็นใ่ฆใคใใฆใฟใพใใใใ
2. ็ฎๆจ่จญๅฎใ่กใ: ้ๆๅฏ่ฝใช็ฎๆจใ็ซใฆใใใจใงใๆฅใ
ๆ้ทใใฆใใใใจใๅฎๆใงใใใใใใใ็ใพใใฆใใพใใใพใใๅฎๆ็ใซ้ฒๆ็ถๆณใ็ขบ่ชใใใใจใงใ้ๆๆใจใจใใซใใใชใใใๆฐใซใคใชใใใงใใใใ
3. ๅๅใใกใจไบคๆตใใ: ่ทๅ ดใงใฎไบบ้้ขไฟใฏใไปไบใซๅฏพใใๆ
็ฑใ็ถญๆใใใใใซ้่ฆใงใใใณใใฅใใฑใผใทใงใณใใจใใใจใงใใไบใใฎใใจใ็่งฃใใๅฉใๅใใใจใใงใใพใใ่ทๅ ดใฎใคใใณใใซๅๅ ใใใใไผๆฉๆ้ใซใฏ้่ซใใใใใฆใ็ฉๆฅต็ใซๅจใใฎไบบใจ้ขใใใพใใใใ
4. ๆฐใใในใญใซใ่บซใซใคใใ: ในใญใซๅไธใฎใใใฎๅๅผทใใๆฐใใ่ณๆ ผๅๅพใชใฉใซใใใ่ชๅใฎ่ฝๅใ้ซใใใใจใใงใใพใใ่ชๅทฑๅ็บ็ใชๆดปๅใใ่ชไฟกใๅไธๅฟใธใจใคใชใใใใใใใพใใใ
5. ไผๆใใจใฃใฆใชใใฌใใทใฅใใ: ้ทๆไผๆใใจใใๅฟ่บซใจใใซไผๆฏใใใใจใฏๅคงๅใชใใจใงใใๆ
่กใธ่กใฃใใใๅฎถๆใจไธ็ทใซ้ใใใใใใใใจใงๆฐๅ่ปขๆใใงใใใพใๆฐใใชๆฐๆใกใงไปไบใซๅใ็ตใใใจใใงใใใใใซใชใใพใใ
Additional Information
The model was trained using LoRA with the following specifications:
Base Model
- The training started with the pre-trained language model
llm-jp/llm-jp-3-13b
.
Datasets
- ELYZA-tasks-100: A comprehensive dataset covering 100 diverse tasks, enhancing the model's ability to generalize across multiple domains. (link)
- ichikara-instruction: This dataset contains a diverse range of text samples, providing a strong foundation for understanding contextual nuances. (link)
Training Methodology
- PEFT with LoRA: The training employed PEFT (Parameter-Efficient Fine-Tuning) using LoRA (Low-Rank Adaptation), enabling efficient fine-tuning with reduced computational costs while retaining the model's performance. This model was trained with Unsloth and Huggingface's TRL library.
License
This model is licensed under the CC BY-NC-SA 4.0 License. For more details, see the LICENSE file in this repository.
Acknowledgment
This model was developed as part of the LLM course 2024 exercises conducted by the Matsuo-Iwasawa Lab at the University of Tokyo.
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for tokutsu/llm-jp-3-13b-it
Base model
llm-jp/llm-jp-3-13b