Text Generation
Transformers
PyTorch
English
gpt_neox
text-generation-inference
Inference Endpoints
File size: 8,008 Bytes
5ad0b9d
 
 
 
d4208e1
 
 
 
2876bf2
 
 
 
 
 
 
 
 
 
 
5ad0b9d
 
47b94a7
5ad0b9d
47b94a7
89560d3
 
5ad0b9d
47b94a7
 
 
5e02cb5
 
5ad0b9d
 
 
 
 
70e63a0
5ad0b9d
 
 
c5c8ebc
 
b34468b
 
 
 
 
 
5ad0b9d
 
d4208e1
c5c8ebc
5ad0b9d
c5c8ebc
 
5ad0b9d
c5c8ebc
 
 
 
 
 
5ad0b9d
47b94a7
 
5ad0b9d
 
c5c8ebc
 
 
 
 
 
 
 
5ad0b9d
c5c8ebc
 
 
5ad0b9d
 
 
 
d4208e1
c5c8ebc
 
 
 
 
 
 
 
 
5ad0b9d
 
c5c8ebc
 
5ad0b9d
c5c8ebc
 
 
 
 
 
5ad0b9d
47b94a7
 
c5c8ebc
5ad0b9d
c5c8ebc
 
 
 
 
 
 
 
5ad0b9d
c5c8ebc
 
 
5ad0b9d
 
 
 
d2471ee
 
 
5ad0b9d
d2471ee
 
 
 
 
 
5ad0b9d
47b94a7
 
5ad0b9d
d2471ee
 
 
 
 
 
 
 
5ad0b9d
c5c8ebc
2efb75c
c5c8ebc
5ad0b9d
 
c5c8ebc
 
5ad0b9d
 
 
 
 
 
 
 
 
 
 
 
 
47b94a7
5ad0b9d
 
 
 
 
47b94a7
596337b
5ad0b9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47b94a7
5ad0b9d
 
 
 
 
 
 
 
 
 
 
6f2c961
 
 
47b94a7
6f2c961
5ad0b9d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
---
license: apache-2.0
language:
- en
datasets:
- togethercomputer/RedPajama-Data-1T
- OpenAssistant/oasst1
- databricks/databricks-dolly-15k
widget:
- text: "<human>: Write an email to my friends inviting them to come to my home on Friday for a dinner party, bring their own food to share.\n<bot>:"
  example_title: "Email Writing"
- text: "<human>: Create a list of things to do in San Francisco\n<bot>:"
  example_title: "Brainstorming"
inference:
  parameters:
    temperature: 0.7
    top_p: 0.7
    top_k: 50
    max_new_tokens: 128
---

# RedPajama-INCITE-7B-Chat

RedPajama-INCITE-7B-Chat was developed by Together and leaders from the open-source AI community including Ontocord.ai, ETH DS3Lab, AAI CERC, Université de Montréal, MILA - Québec AI Institute, Stanford Center for Research on Foundation Models (CRFM), Stanford Hazy Research research group and LAION. 

It is fine-tuned on OASST1 and Dolly2 to enhance chatting ability.

  - Base Model: [RedPajama-INCITE-7B-Base](https://huggingface.co/togethercomputer/RedPajama-INCITE-7B-Base)
  - Instruction-tuned Version: [RedPajama-INCITE-7B-Instruct](https://huggingface.co/togethercomputer/RedPajama-INCITE-7B-Instruct)
  - Chat Version: [RedPajama-INCITE-7B-Chat](https://huggingface.co/togethercomputer/RedPajama-INCITE-7B-Chat)


## Model Details
- **Developed by**: Together Computer.
- **Model type**: Language Model
- **Language(s)**: English
- **License**: Apache 2.0
- **Model Description**: A 6.9B parameter pretrained language model.

# Quick Start

Please note that the model requires `transformers` version >= 4.25.1.

To prompt the chat model, use the following format:
```
<human>: [Instruction]
<bot>:
```

## GPU Inference

This requires a GPU with 16GB memory.

```python
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM

MIN_TRANSFORMERS_VERSION = '4.25.1'

# check transformers version
assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.'

# init
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-7B-Chat")
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-7B-Chat", torch_dtype=torch.float16)
model = model.to('cuda:0')
# infer
prompt = "<human>: Who is Alan Turing?\n<bot>:"
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
input_length = inputs.input_ids.shape[1]
outputs = model.generate(
    **inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True
)
token = outputs.sequences[0, input_length:]
output_str = tokenizer.decode(token)
print(output_str)
"""
Alan Mathison Turing (23 June 1912  7 June 1954) was an English computer scientist, mathematician, logician, cryptanalyst, philosopher, mathematician, and theoretical biologist.
"""
```

## GPU Inference in Int8

This requires a GPU with 12GB memory.

To run inference with int8, please ensure you have installed accelerate and bitandbytes. You can install them with the following command:

```bash
pip install accelerate
pip install bitsandbytes
```

Then you can run inference with int8 as follows:

```python
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM

MIN_TRANSFORMERS_VERSION = '4.25.1'

# check transformers version
assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.'

# init
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-7B-Chat")
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-7B-Chat", device_map='auto', torch_dtype=torch.float16, load_in_8bit=True)

# infer
prompt = "<human>: Who is Alan Turing?\n<bot>:"
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
input_length = inputs.input_ids.shape[1]
outputs = model.generate(
    **inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True
)
token = outputs.sequences[0, input_length:]
output_str = tokenizer.decode(token)
print(output_str)
"""
Alan Mathison Turing (23 June 1912 – 7 June 1954) was an English computer scientist, mathematician, logician, cryptanalyst, philosopher, and theoretical biologist.
"""
```

## CPU Inference

```python
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM

MIN_TRANSFORMERS_VERSION = '4.25.1'

# check transformers version
assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.'

# init
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-7B-Chat")
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-7B-Chat", torch_dtype=torch.bfloat16)
# infer
prompt = "<human>: Who is Alan Turing?\n<bot>:"
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
input_length = inputs.input_ids.shape[1]
outputs = model.generate(
    **inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True
)
token = outputs.sequences[0, input_length:]
output_str = tokenizer.decode(token)
print(output_str)
"""
Alan Mathison Turing, OBE, FRS, (23 June 1912 – 7 June 1954) was an English computer scientist, mathematician, logician, cryptanalyst, philosopher, and theoretical biologist.
"""
```

Please note that since `LayerNormKernelImpl` is not implemented in fp16 for CPU, we use `bfloat16` for CPU inference.


# Uses

## Direct Use 

Excluded uses are described below.

### Misuse, Malicious Use, and Out-of-Scope Use

It is the responsibility of the end user to ensure that the model is used in a responsible and ethical manner.

#### Out-of-Scope Use

`RedPajama-INCITE-7B-Chat` is a language model and may not perform well for other use cases outside of its intended scope. 
For example, it may not be suitable for use in safety-critical applications or for making decisions that have a significant impact on individuals or society. 
It is important to consider the limitations of the model and to only use it for its intended purpose.

#### Misuse and Malicious Use

`RedPajama-INCITE-7B-Chat` is designed for language modeling.
Misuse of the model, such as using it to engage in illegal or unethical activities, is strictly prohibited and goes against the principles of the project.

Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to:

- Generating fake news, misinformation, or propaganda
- Promoting hate speech, discrimination, or violence against individuals or groups
- Impersonating individuals or organizations without their consent
- Engaging in cyberbullying or harassment
- Defamatory content
- Spamming or scamming
- Sharing confidential or sensitive information without proper authorization
- Violating the terms of use of the model or the data used to train it
- Creating automated bots for malicious purposes such as spreading malware, phishing scams, or spamming

## Limitations

`RedPajama-INCITE-7B-Chat`, like other language models, has limitations that should be taken into consideration. 
For example, the model may not always provide accurate or relevant answers, particularly for questions that are complex, ambiguous, or outside of its training data. 
We therefore welcome contributions from individuals and organizations, and encourage collaboration towards creating a more robust and inclusive chatbot.

## Training

**Training Data**

Please refer to [togethercomputer/RedPajama-Data-1T](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T)

**Training Procedure**

- **Hardware:** 8 A100
- **Optimizer:** Adam
- **Gradient Accumulations**: 1
- **Num of Tokens:** 79M tokens
- **Learning rate:** 1e-5

## Community

Join us on [Together Discord](https://discord.gg/6ZVDU8tTD4)