File size: 5,936 Bytes
a00cfff
 
8a0c17c
a00cfff
 
 
 
66d6836
 
 
 
 
a00cfff
 
 
 
 
66d6836
a00cfff
8a0c17c
 
 
a00cfff
66d6836
a00cfff
66d6836
 
a00cfff
66d6836
 
a00cfff
66d6836
 
a00cfff
66d6836
 
a00cfff
66d6836
 
a00cfff
66d6836
 
a00cfff
66d6836
 
a00cfff
66d6836
 
a00cfff
66d6836
a00cfff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
---
datasets:
- tner/mit_movie_trivia
metrics:
- f1
- precision
- recall
pipeline_tag: token-classification
widget:
- text: Jacob Collier is a Grammy awarded artist from England.
  example_title: NER Example 1
base_model: roberta-large
model-index:
- name: tner/roberta-large-mit-movie-trivia
  results:
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: tner/mit_movie_trivia
      type: tner/mit_movie_trivia
      args: tner/mit_movie_trivia
    metrics:
    - type: f1
      value: 0.7284025200655909
      name: F1
    - type: precision
      value: 0.7151330283002881
      name: Precision
    - type: recall
      value: 0.7421737601125572
      name: Recall
    - type: f1_macro
      value: 0.6502255723148889
      name: F1 (macro)
    - type: precision_macro
      value: 0.6457158565124362
      name: Precision (macro)
    - type: recall_macro
      value: 0.6578012664661943
      name: Recall (macro)
    - type: f1_entity_span
      value: 0.749525289142068
      name: F1 (entity span)
    - type: precision_entity_span
      value: 0.7359322033898306
      name: Precision (entity span)
    - type: recall_entity_span
      value: 0.7636299683432993
      name: Recall (entity span)
---
# tner/roberta-large-mit-movie-trivia

This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the 
[tner/mit_movie_trivia](https://huggingface.co/datasets/tner/mit_movie_trivia) dataset.
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
for more detail). It achieves the following results on the test set:
- F1 (micro): 0.7284025200655909
- Precision (micro): 0.7151330283002881
- Recall (micro): 0.7421737601125572
- F1 (macro): 0.6502255723148889
- Precision (macro): 0.6457158565124362
- Recall (macro): 0.6578012664661943

The per-entity breakdown of the F1 score on the test set are below:
- actor: 0.9557453416149068
- award: 0.41726618705035967
- character_name: 0.7467105263157895
- date: 0.9668674698795181
- director: 0.9148936170212766
- genre: 0.7277079593058049
- opinion: 0.43478260869565216
- origin: 0.28846153846153844
- plot: 0.5132575757575758
- quote: 0.8387096774193549
- relationship: 0.5697329376854599
- soundtrack: 0.42857142857142855 

For F1 scores, the confidence interval is obtained by bootstrap as below:
- F1 (micro): 
    - 90%: [0.718570586211627, 0.7387631655667131]
    - 95%: [0.7170135350354089, 0.7412372838115527] 
- F1 (macro): 
    - 90%: [0.718570586211627, 0.7387631655667131]
    - 95%: [0.7170135350354089, 0.7412372838115527] 

Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-mit-movie-trivia/raw/main/eval/metric.json) 
and [metric file of entity span](https://huggingface.co/tner/roberta-large-mit-movie-trivia/raw/main/eval/metric_span.json).

### Usage
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip   
```shell
pip install tner
```
and activate model as below.
```python
from tner import TransformersNER
model = TransformersNER("tner/roberta-large-mit-movie-trivia")
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
```
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.

### Training hyperparameters

The following hyperparameters were used during training:
 - dataset: ['tner/mit_movie_trivia']
 - dataset_split: train
 - dataset_name: None
 - local_dataset: None
 - model: roberta-large
 - crf: True
 - max_length: 128
 - epoch: 15
 - batch_size: 64
 - lr: 1e-05
 - random_seed: 42
 - gradient_accumulation_steps: 1
 - weight_decay: 1e-07
 - lr_warmup_step_ratio: 0.1
 - max_grad_norm: 10.0

The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-large-mit-movie-trivia/raw/main/trainer_config.json).

### Reference
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).

```

@inproceedings{ushio-camacho-collados-2021-ner,
    title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
    author = "Ushio, Asahi  and
      Camacho-Collados, Jose",
    booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
    month = apr,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.eacl-demos.7",
    doi = "10.18653/v1/2021.eacl-demos.7",
    pages = "53--62",
    abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
}

```