asahi417 commited on
Commit
a00cfff
1 Parent(s): 2c139e5

model update

Browse files
README.md ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - mit_movie_trivia
4
+ metrics:
5
+ - f1
6
+ - precision
7
+ - recall
8
+ model-index:
9
+ - name: tner/roberta-large-mit-movie-trivia
10
+ results:
11
+ - task:
12
+ name: Token Classification
13
+ type: token-classification
14
+ dataset:
15
+ name: mit_movie_trivia
16
+ type: mit_movie_trivia
17
+ args: mit_movie_trivia
18
+ metrics:
19
+ - name: F1
20
+ type: f1
21
+ value: 0.7284025200655909
22
+ - name: Precision
23
+ type: precision
24
+ value: 0.7151330283002881
25
+ - name: Recall
26
+ type: recall
27
+ value: 0.7421737601125572
28
+ - name: F1 (macro)
29
+ type: f1_macro
30
+ value: 0.6502255723148889
31
+ - name: Precision (macro)
32
+ type: precision_macro
33
+ value: 0.6457158565124362
34
+ - name: Recall (macro)
35
+ type: recall_macro
36
+ value: 0.6578012664661943
37
+ - name: F1 (entity span)
38
+ type: f1_entity_span
39
+ value: 0.749525289142068
40
+ - name: Precision (entity span)
41
+ type: precision_entity_span
42
+ value: 0.7359322033898306
43
+ - name: Recall (entity span)
44
+ type: recall_entity_span
45
+ value: 0.7636299683432993
46
+
47
+ pipeline_tag: token-classification
48
+ widget:
49
+ - text: "Jacob Collier is a Grammy awarded artist from England."
50
+ example_title: "NER Example 1"
51
+ ---
52
+ # tner/roberta-large-mit-movie-trivia
53
+
54
+ This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the
55
+ [tner/mit_movie_trivia](https://huggingface.co/datasets/tner/mit_movie_trivia) dataset.
56
+ Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
57
+ for more detail). It achieves the following results on the test set:
58
+ - F1 (micro): 0.7284025200655909
59
+ - Precision (micro): 0.7151330283002881
60
+ - Recall (micro): 0.7421737601125572
61
+ - F1 (macro): 0.6502255723148889
62
+ - Precision (macro): 0.6457158565124362
63
+ - Recall (macro): 0.6578012664661943
64
+
65
+ The per-entity breakdown of the F1 score on the test set are below:
66
+ - actor: 0.9557453416149068
67
+ - award: 0.41726618705035967
68
+ - character_name: 0.7467105263157895
69
+ - date: 0.9668674698795181
70
+ - director: 0.9148936170212766
71
+ - genre: 0.7277079593058049
72
+ - opinion: 0.43478260869565216
73
+ - origin: 0.28846153846153844
74
+ - plot: 0.5132575757575758
75
+ - quote: 0.8387096774193549
76
+ - relationship: 0.5697329376854599
77
+ - soundtrack: 0.42857142857142855
78
+
79
+ For F1 scores, the confidence interval is obtained by bootstrap as below:
80
+ - F1 (micro):
81
+ - 90%: [0.718570586211627, 0.7387631655667131]
82
+ - 95%: [0.7170135350354089, 0.7412372838115527]
83
+ - F1 (macro):
84
+ - 90%: [0.718570586211627, 0.7387631655667131]
85
+ - 95%: [0.7170135350354089, 0.7412372838115527]
86
+
87
+ Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-mit-movie-trivia/raw/main/eval/metric.json)
88
+ and [metric file of entity span](https://huggingface.co/tner/roberta-large-mit-movie-trivia/raw/main/eval/metric_span.json).
89
+
90
+ ### Usage
91
+ This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
92
+ ```shell
93
+ pip install tner
94
+ ```
95
+ and activate model as below.
96
+ ```python
97
+ from tner import TransformersNER
98
+ model = TransformersNER("tner/roberta-large-mit-movie-trivia")
99
+ model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
100
+ ```
101
+ It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
102
+
103
+ ### Training hyperparameters
104
+
105
+ The following hyperparameters were used during training:
106
+ - dataset: ['tner/mit_movie_trivia']
107
+ - dataset_split: train
108
+ - dataset_name: None
109
+ - local_dataset: None
110
+ - model: roberta-large
111
+ - crf: True
112
+ - max_length: 128
113
+ - epoch: 15
114
+ - batch_size: 64
115
+ - lr: 1e-05
116
+ - random_seed: 42
117
+ - gradient_accumulation_steps: 1
118
+ - weight_decay: 1e-07
119
+ - lr_warmup_step_ratio: 0.1
120
+ - max_grad_norm: 10.0
121
+
122
+ The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-large-mit-movie-trivia/raw/main/trainer_config.json).
123
+
124
+ ### Reference
125
+ If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
126
+
127
+ ```
128
+
129
+ @inproceedings{ushio-camacho-collados-2021-ner,
130
+ title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
131
+ author = "Ushio, Asahi and
132
+ Camacho-Collados, Jose",
133
+ booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
134
+ month = apr,
135
+ year = "2021",
136
+ address = "Online",
137
+ publisher = "Association for Computational Linguistics",
138
+ url = "https://aclanthology.org/2021.eacl-demos.7",
139
+ doi = "10.18653/v1/2021.eacl-demos.7",
140
+ pages = "53--62",
141
+ abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
142
+ }
143
+
144
+ ```
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "tner_ckpt/mit_movie_trivia_roberta_large/best_model",
3
  "architectures": [
4
  "RobertaForTokenClassification"
5
  ],
 
1
  {
2
+ "_name_or_path": "tner_ckpt/mit_movie_trivia_roberta_large/model_ayzfwn/epoch_5",
3
  "architectures": [
4
  "RobertaForTokenClassification"
5
  ],
eval/metric.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"micro/f1": 0.7284025200655909, "micro/f1_ci": {"90": [0.718570586211627, 0.7387631655667131], "95": [0.7170135350354089, 0.7412372838115527]}, "micro/recall": 0.7421737601125572, "micro/precision": 0.7151330283002881, "macro/f1": 0.6502255723148889, "macro/f1_ci": {"90": [0.6187041261525986, 0.6787182709337801], "95": [0.6109966715241302, 0.6849815706753698]}, "macro/recall": 0.6578012664661943, "macro/precision": 0.6457158565124362, "per_entity_metric": {"actor": {"f1": 0.9557453416149068, "f1_ci": {"90": [0.9467089142451703, 0.96457832207151], "95": [0.9446998104303214, 0.9663849104164107]}, "precision": 0.945468509984639, "recall": 0.966248037676609}, "award": {"f1": 0.41726618705035967, "f1_ci": {"90": [0.3174100863974281, 0.5303072158044535], "95": [0.3039128151260504, 0.5454545454545454]}, "precision": 0.3972602739726027, "recall": 0.4393939393939394}, "character_name": {"f1": 0.7467105263157895, "f1_ci": {"90": [0.7048839637035254, 0.7844453199853147], "95": [0.6974255691768825, 0.7915889898024219]}, "precision": 0.6984615384615385, "recall": 0.8021201413427562}, "date": {"f1": 0.9668674698795181, "f1_ci": {"90": [0.9560524286815729, 0.9766113703127701], "95": [0.9539611338144509, 0.978115674127837]}, "precision": 0.9625187406296851, "recall": 0.9712556732223904}, "director": {"f1": 0.9148936170212766, "f1_ci": {"90": [0.8969187934915231, 0.9319515648084927], "95": [0.8928550616050616, 0.9344502419864533]}, "precision": 0.9192399049881235, "recall": 0.9105882352941177}, "genre": {"f1": 0.7277079593058049, "f1_ci": {"90": [0.7030853825730076, 0.7531861349576963], "95": [0.6999361091231079, 0.7563387936006287]}, "precision": 0.6893424036281179, "recall": 0.770595690747782}, "opinion": {"f1": 0.43478260869565216, "f1_ci": {"90": [0.3816325514218835, 0.4874672405087639], "95": [0.37323313215722687, 0.4961574784559085]}, "precision": 0.4336734693877551, "recall": 0.4358974358974359}, "origin": {"f1": 0.28846153846153844, "f1_ci": {"90": [0.23671497584541065, 0.3412573724871241], "95": [0.22724880382775117, 0.3492127496159754]}, "precision": 0.26548672566371684, "recall": 0.3157894736842105}, "plot": {"f1": 0.5132575757575758, "f1_ci": {"90": [0.49135588028061145, 0.5333437337493498], "95": [0.48749443384223917, 0.5387301802457543]}, "precision": 0.5109993714644877, "recall": 0.5155358275206088}, "quote": {"f1": 0.8387096774193549, "f1_ci": {"90": [0.7469519870526883, 0.9213483146067417], "95": [0.7272727272727273, 0.9334042553191492]}, "precision": 0.8478260869565217, "recall": 0.8297872340425532}, "relationship": {"f1": 0.5697329376854599, "f1_ci": {"90": [0.5093859929645027, 0.6280584452098124], "95": [0.49858144263243415, 0.6380924033610567]}, "precision": 0.5783132530120482, "recall": 0.5614035087719298}, "soundtrack": {"f1": 0.42857142857142855, "f1_ci": {"90": [0.1111111111111111, 0.7142857142857143], "95": [0.0, 0.7777777777777777]}, "precision": 0.5, "recall": 0.375}}}
eval/metric_span.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"micro/f1": 0.749525289142068, "micro/f1_ci": {"90": [0.7397126154825829, 0.7597425112279943], "95": [0.7379706607775025, 0.7623178184832154]}, "micro/recall": 0.7636299683432993, "micro/precision": 0.7359322033898306, "macro/f1": 0.749525289142068, "macro/f1_ci": {"90": [0.7397126154825829, 0.7597425112279943], "95": [0.7379706607775025, 0.7623178184832154]}, "macro/recall": 0.7636299683432993, "macro/precision": 0.7359322033898306}
eval/prediction.validation.json ADDED
The diff for this file is too large to render. See raw diff
 
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f5c42436f7538af5cd324260a79cf87c777eef3de550c2b60230e703893b3e15
3
- size 1417474161
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a2cc41c6f7f179b759608e8acb7bb682e92ee0c5813bed07f3794294ae3e402
3
+ size 1417479601
tokenizer_config.json CHANGED
@@ -6,7 +6,7 @@
6
  "errors": "replace",
7
  "mask_token": "<mask>",
8
  "model_max_length": 512,
9
- "name_or_path": "tner_ckpt/mit_movie_trivia_roberta_large/best_model",
10
  "pad_token": "<pad>",
11
  "sep_token": "</s>",
12
  "special_tokens_map_file": "tner_ckpt/mit_movie_trivia_roberta_large/model_ayzfwn/epoch_5/special_tokens_map.json",
 
6
  "errors": "replace",
7
  "mask_token": "<mask>",
8
  "model_max_length": 512,
9
+ "name_or_path": "tner_ckpt/mit_movie_trivia_roberta_large/model_ayzfwn/epoch_5",
10
  "pad_token": "<pad>",
11
  "sep_token": "</s>",
12
  "special_tokens_map_file": "tner_ckpt/mit_movie_trivia_roberta_large/model_ayzfwn/epoch_5/special_tokens_map.json",
trainer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"dataset": ["tner/mit_movie_trivia"], "dataset_split": "train", "dataset_name": null, "local_dataset": null, "model": "roberta-large", "crf": true, "max_length": 128, "epoch": 15, "batch_size": 64, "lr": 1e-05, "random_seed": 42, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.1, "max_grad_norm": 10.0}