wav2vec-jdrt-RTSplit_and_SpeakerSplitModel-0107-5

This model is a fine-tuned version of jonatasgrosman/wav2vec2-large-xlsr-53-japanese on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0032
  • Wer: 0.1835
  • Cer: 0.1557

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 35

Training results

Training Loss Epoch Step Validation Loss Wer Cer
14.5102 1.0 60 13.5418 1.0011 1.2966
6.2989 2.0 120 4.6126 1.0 0.8736
2.208 3.0 180 1.7112 0.9993 0.8160
1.098 4.0 240 0.8765 0.8410 0.5698
0.8201 5.0 300 0.6964 0.8221 0.5340
0.7499 6.0 360 0.6299 0.8217 0.5305
0.6753 7.0 420 0.5998 0.7691 0.4482
0.6003 8.0 480 0.5502 0.7394 0.4564
0.5732 9.0 540 0.5047 0.7098 0.3906
0.5404 10.0 600 0.4694 0.6679 0.3283
0.4889 11.0 660 0.3979 0.6379 0.3017
0.4401 12.0 720 0.3255 0.5849 0.2792
0.4295 13.0 780 0.2853 0.5044 0.2772
0.3216 14.0 840 0.2204 0.4511 0.2234
0.2583 15.0 900 0.1492 0.3929 0.2130
0.226 16.0 960 0.1007 0.2817 0.1690
0.2304 17.0 1020 0.0694 0.2439 0.1699
0.1487 18.0 1080 0.0471 0.2142 0.1758
0.1045 19.0 1140 0.0305 0.2168 0.1686
0.1104 20.0 1200 0.0256 0.2072 0.1625
0.094 21.0 1260 0.0226 0.2272 0.1760
0.0987 22.0 1320 0.0129 0.2013 0.1900
0.0753 23.0 1380 0.0110 0.2053 0.1786
0.0544 24.0 1440 0.0091 0.1909 0.1858
0.0684 25.0 1500 0.0083 0.1901 0.1728
0.0723 26.0 1560 0.0083 0.2027 0.1854
0.061 27.0 1620 0.0061 0.2020 0.1779
0.0635 28.0 1680 0.0059 0.1964 0.1818
0.0336 29.0 1740 0.0048 0.1887 0.1574
0.0455 30.0 1800 0.0036 0.1842 0.1694
0.0672 31.0 1860 0.0038 0.1838 0.1507
0.0315 32.0 1920 0.0033 0.1853 0.1555
0.0466 33.0 1980 0.0033 0.1827 0.1569
0.0491 34.0 2040 0.0035 0.1835 0.1556
0.0315 35.0 2100 0.0032 0.1835 0.1557

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.6
  • Tokenizers 0.15.0
Downloads last month
22
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tndklab/wav2vec-jdrt-RTSplit_and_SpeakerSplitModel-0107-5

Finetuned
(6)
this model