import torch
import torch.nn as nn
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
class TextRefinementModel(nn.Module):
def __init__(self, model_name='tirthadagr8/custom-mbart-large-50', max_length=64):
super(TextRefinementModel, self).__init__()
self.tokenizer = MBart50TokenizerFast.from_pretrained(model_name)
self.mbart = MBartForConditionalGeneration.from_pretrained(model_name)
self.mbart.config.max_length=64
self.max_length = max_length
# Set the language code for Japanese (ja_XX) or Chinese (zh_CN)
# self.tokenizer.src_lang = 'ja_XX' # For Japanese
# self.tokenizer.src_lang = 'zh_CN' # Uncomment for Chinese
def forward(self, input_texts):
# Tokenize the noisy text inputs
input_ids = self.tokenizer(input_texts, return_tensors='pt', padding=True, truncation=True, max_length=self.max_length)['input_ids']
# mBART generates output logits
output_logits = self.mbart(input_ids).logits
return output_logits
def generate_corrected_text(self, input_texts, temperature=0.7):
# Tokenize the input noisy text
input_ids = self.tokenizer(input_texts, return_tensors='pt', padding=True, truncation=True, max_length=self.max_length)['input_ids']
# Generate corrected text using mBART's generate function
mbart_outputs = self.mbart.generate(input_ids, max_length=self.max_length, temperature=temperature, num_return_sequences=1)
# Decode generated text
corrected_texts = [self.tokenizer.decode(g, skip_special_tokens=True) for g in mbart_outputs]
return corrected_texts
# Example usage
model = TextRefinementModel()
noisy_text = ["ใใใฏ้้ใฃใใใญในใใฎไพใงใใ", "่ฟๆฏ้่ฏฏ็ๆๆฌ็คบไพใ"] # Japanese and Chinese examples
corrected_text = model.generate_corrected_text(noisy_text)
print(f"Corrected Text: {corrected_text}")
For training:
from transformers import AdamW
import torch.nn.functional as F
from tqdm import tqdm
from torch.utils.data import DataLoader
import numpy as np
# Initialize the mBART model and optimizer
model = TextRefinementModel().cuda()
optimizer = AdamW(model.parameters(), lr=5e-5)
batch_size = 16
# Create a custom dataset class
class TextCorrectionDataset(torch.utils.data.Dataset):
def __init__(self, data, tokenizer, max_length=64):
self.data = data
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
noisy_text, correct_text = self.data[idx]
inputs = self.tokenizer(noisy_text, return_tensors='pt', padding='max_length', truncation=True, max_length=self.max_length)
labels = self.tokenizer(correct_text, return_tensors='pt', padding='max_length', truncation=True, max_length=self.max_length)
# Adjust label tensors for correct shape
input_ids = inputs['input_ids'].squeeze() # Remove extra batch dimension
labels = labels['input_ids'].squeeze() # Same for labels
return input_ids, labels
# Create DataLoader with batching
train_dataset = TextCorrectionDataset(train_data, model.tokenizer)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
# Define training loop with batches
def train_epoch(model, train_loader, optimizer):
model.train()
total_loss = []
step_iter=0
for input_ids, labels in tqdm(train_loader):
# Move tensors to model's device
input_ids = input_ids.to(model.mbart.device)
labels = labels.to(model.mbart.device)
# Forward pass
outputs = model.mbart(input_ids=input_ids, labels=labels)
loss = outputs.loss
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss.append(loss.item())
if step_iter%100==0:
print('Loss:',np.mean(total_loss))
step_iter+=1
return np.mean(total_loss)
# Example training loop
for epoch in range(5): # Train for 5 epochs (or as needed)
loss = train_epoch(model, train_loader, optimizer)
print(f"Epoch {epoch+1}, Loss: {loss:.4f}")
- Downloads last month
- 10