File size: 1,281 Bytes
fb4b5f2
97ecea1
 
 
 
 
 
 
fb4b5f2
 
 
97ecea1
 
 
46a0b74
 
 
 
 
 
 
ef18d1e
46a0b74
 
 
 
 
 
ef18d1e
fb4b5f2
 
 
 
 
 
 
97ecea1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
---
datasets:
- Hoshikuzu/JESC
language:
- en
- ja
base_model:
- openai-community/gpt2
---
Made using Gpt-Small from scratch for learning purpose.
Tokenizer used is from Gemma 2-2B-JPN-IT which is trained on japanese dataset from JESC.

Model usage:-

```python
from transformers import AutoTokenizer,AutoModelForCausalLM
tokenizer=AutoTokenizer.from_pretrained('tirthadagr8/Japanese_to_english_gpt2CasualLM_GemmaTokenizer')
model=AutoModelForCausalLM.from_pretrained('tirthadagr8/Japanese_to_english_gpt2CasualLM_GemmaTokenizer')
model.cuda()
src_text='あγͺたとは遊びたくγͺい'
print(tokenizer.batch_decode(model.generate(tokenizer.encode(f"Translate the following Japanese sentence to English:\n\nJapanese:{src_text}\nEnglish:",return_tensors='pt')[:,:-1].cuda(),max_length=128))[0])
```
OUTPUT:
```
<bos>Translate the following Japanese sentence to English:

Japanese:あγͺたとは遊びたくγͺい
English:i don't want to play with you.<eos>
```
```bibtex
@ARTICLE{pryzant_jesc_2018,
   author = {{Pryzant}, R. and {Chung}, Y. and {Jurafsky}, D. and {Britz}, D.},
    title = "{JESC: Japanese-English Subtitle Corpus}",
  journal = {Language Resources and Evaluation Conference (LREC)},
 keywords = {Computer Science - Computation and Language},
     year = 2018
}