Edit model card

gopdatastt_add_transformer

This model is a fine-tuned version of facebook/wav2vec2-base-960h on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0920
  • Wer: 0.1617

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.1709 1.05 500 0.1453 0.2194
0.3131 2.11 1000 0.1094 0.2055
0.276 3.16 1500 0.1198 0.1998
0.2416 4.21 2000 0.1873 0.2026
0.2093 5.26 2500 0.1392 0.1974
0.1987 6.32 3000 0.1123 0.1944
0.1714 7.37 3500 0.1089 0.1890
0.1634 8.42 4000 0.1007 0.1863
0.1459 9.47 4500 0.1340 0.1864
0.1461 10.53 5000 0.1016 0.1874
0.1316 11.58 5500 0.1110 0.1891
0.1318 12.63 6000 0.0942 0.1855
0.1084 13.68 6500 0.0992 0.1827
0.1064 14.74 7000 0.1010 0.1801
0.1059 15.79 7500 0.1173 0.1834
0.094 16.84 8000 0.1096 0.1815
0.0918 17.89 8500 0.1046 0.1780
0.0874 18.95 9000 0.1103 0.1788
0.0813 20.0 9500 0.1065 0.1768
0.0753 21.05 10000 0.0997 0.1747
0.0729 22.11 10500 0.1053 0.1748
0.0655 23.16 11000 0.1042 0.1726
0.0647 24.21 11500 0.0960 0.1746
0.0581 25.26 12000 0.1060 0.1733
0.0573 26.32 12500 0.0972 0.1706
0.0524 27.37 13000 0.0963 0.1725
0.0577 28.42 13500 0.0920 0.1696
0.0488 29.47 14000 0.0942 0.1686

Framework versions

  • Transformers 4.17.0
  • Pytorch 2.5.1+cu121
  • Datasets 1.18.3
  • Tokenizers 0.20.3
Downloads last month
134
Inference API
Unable to determine this model's library. Check the docs .