SignBart-ASL-1000

This model is a fine-tuned version of tinh2312/SignBart-ASL-1000 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8280
  • Accuracy: 0.8145
  • Precision: 0.8290
  • Recall: 0.8145

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 1000

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall
0.9268 1.0 96 0.8296 0.8147 0.8295 0.8147
0.8969 2.0 192 0.8287 0.8159 0.8304 0.8159
0.9075 3.0 288 0.8281 0.8152 0.8297 0.8152
0.8239 4.0 384 0.8282 0.8145 0.8295 0.8145
0.9632 5.0 480 0.8283 0.8138 0.8287 0.8138
0.906 6.0 576 0.8278 0.8145 0.8287 0.8145
0.884 7.0 672 0.8282 0.8152 0.8304 0.8152
1.0349 8.0 768 0.8282 0.8141 0.8289 0.8141
0.8927 9.0 864 0.8280 0.8145 0.8289 0.8145
0.92 10.0 960 0.8279 0.8147 0.8292 0.8147
0.9897 11.0 1056 0.8280 0.8145 0.8290 0.8145

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
0
Safetensors
Model size
3.58M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for tinh2312/SignBart-ASL-1000

Unable to build the model tree, the base model loops to the model itself. Learn more.