timm
/

File size: 4,589 Bytes
403e637
61a801a
 
403e637
 
 
d8c6735
403e637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
---
license: mit
library_name: timm
tags:
- image-classification
- timm
- transformers
datasets:
- imagenet-1k
---
# Model card for rexnet_150.nav_in1k

A ReXNet image classification model. Pretrained on ImageNet-1k by paper authors.


## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
  - Params (M): 9.7
  - GMACs: 0.9
  - Activations (M): 11.2
  - Image size: 224 x 224
- **Papers:**
  - Rethinking Channel Dimensions for Efficient Model Design: https://arxiv.org/abs/2007.00992
- **Original:** https://github.com/clovaai/rexnet
- **Dataset:** ImageNet-1k

## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('rexnet_150.nav_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```

### Feature Map Extraction
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'rexnet_150.nav_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 24, 112, 112])
    #  torch.Size([1, 58, 56, 56])
    #  torch.Size([1, 92, 28, 28])
    #  torch.Size([1, 193, 14, 14])
    #  torch.Size([1, 277, 7, 7])

    print(o.shape)
```

### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'rexnet_150.nav_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1920, 7, 7) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
```

## Model Comparison
Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results)."

|model                    |top1  |top5  |param_count|img_size|crop_pct|
|-------------------------|------|------|-----------|--------|--------|
|rexnetr_300.sw_in12k_ft_in1k|84.53 |97.252|34.81      |288     |1.0     |
|rexnetr_200.sw_in12k_ft_in1k|83.164|96.648|16.52      |288     |1.0     |
|rexnet_300.nav_in1k      |82.772|96.232|34.71      |224     |0.875   |
|rexnet_200.nav_in1k      |81.652|95.668|16.37      |224     |0.875   |
|rexnet_150.nav_in1k      |80.308|95.174|9.73       |224     |0.875   |
|rexnet_130.nav_in1k      |79.478|94.68 |7.56       |224     |0.875   |
|rexnet_100.nav_in1k      |77.832|93.886|4.8        |224     |0.875   |

## Citation
```bibtex
@misc{han2021rethinking,
  title={Rethinking Channel Dimensions for Efficient Model Design}, 
  author={Dongyoon Han and Sangdoo Yun and Byeongho Heo and YoungJoon Yoo},
  year={2021},
  eprint={2007.00992},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}  
```
```bibtex
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
```