timm
/

Image Classification
timm
PyTorch
Safetensors
File size: 4,861 Bytes
4f83cf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
---
tags:
- image-classification
- timm
library_name: timm
license: apache-2.0
datasets:
- imagenet-1k
- unknown-6m
---
# Model card for nextvit_base.bd_ssld_6m_in1k

A Next-ViT image classification model. Trained by paper authors on an unknown 6M sample dataset and ImageNet-1k using SSLD distillation.



## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
  - Params (M): 44.8
  - GMACs: 8.2
  - Activations (M): 22.5
  - Image size: 224 x 224
- **Pretrain Dataset:** Unknown-6M
- **Dataset:** ImageNet-1k
- **Papers:**
  - Next-ViT: Next Generation Vision Transformer for Efficient Deployment in Realistic Industrial Scenarios: https://arxiv.org/abs/2207.05501
- **Original:** https://github.com/bytedance/Next-ViT

## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('nextvit_base.bd_ssld_6m_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```

### Feature Map Extraction
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'nextvit_base.bd_ssld_6m_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 96, 56, 56])
    #  torch.Size([1, 256, 28, 28])
    #  torch.Size([1, 512, 14, 14])
    #  torch.Size([1, 1024, 7, 7])

    print(o.shape)
```

### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'nextvit_base.bd_ssld_6m_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1024, 7, 7) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
```

## Model Comparison
### By Top-1

|model                            |top1  |top1_err|top5  |top5_err|param_count|
|---------------------------------|------|--------|------|--------|-----------|
|nextvit_large.bd_ssld_6m_in1k_384|86.542|13.458  |98.142|1.858   |57.87      |
|nextvit_base.bd_ssld_6m_in1k_384 |86.352|13.648  |98.04 |1.96    |44.82      |
|nextvit_small.bd_ssld_6m_in1k_384|85.964|14.036  |97.908|2.092   |31.76      |
|nextvit_large.bd_ssld_6m_in1k    |85.48 |14.52   |97.696|2.304   |57.87      |
|nextvit_base.bd_ssld_6m_in1k     |85.186|14.814  |97.59 |2.41    |44.82      |
|nextvit_large.bd_in1k_384        |84.924|15.076  |97.294|2.706   |57.87      |
|nextvit_small.bd_ssld_6m_in1k    |84.862|15.138  |97.382|2.618   |31.76      |
|nextvit_base.bd_in1k_384         |84.706|15.294  |97.224|2.776   |44.82      |
|nextvit_small.bd_in1k_384        |84.022|15.978  |96.99 |3.01    |31.76      |
|nextvit_large.bd_in1k            |83.626|16.374  |96.694|3.306   |57.87      |
|nextvit_base.bd_in1k             |83.472|16.528  |96.656|3.344   |44.82      |
|nextvit_small.bd_in1k            |82.61 |17.39   |96.226|3.774   |31.76      |

## Citation
```bibtex
@article{li2022next,
  title={Next-ViT: Next Generation Vision Transformer for Efficient Deployment in Realistic Industrial Scenarios},
  author={Li, Jiashi and Xia, Xin and Li, Wei and Li, Huixia and Wang, Xing and Xiao, Xuefeng and Wang, Rui and Zheng, Min and Pan, Xin},
  journal={arXiv preprint arXiv:2207.05501},
  year={2022}
}
```