File size: 4,861 Bytes
4f83cf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
---
tags:
- image-classification
- timm
library_name: timm
license: apache-2.0
datasets:
- imagenet-1k
- unknown-6m
---
# Model card for nextvit_base.bd_ssld_6m_in1k
A Next-ViT image classification model. Trained by paper authors on an unknown 6M sample dataset and ImageNet-1k using SSLD distillation.
## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
- Params (M): 44.8
- GMACs: 8.2
- Activations (M): 22.5
- Image size: 224 x 224
- **Pretrain Dataset:** Unknown-6M
- **Dataset:** ImageNet-1k
- **Papers:**
- Next-ViT: Next Generation Vision Transformer for Efficient Deployment in Realistic Industrial Scenarios: https://arxiv.org/abs/2207.05501
- **Original:** https://github.com/bytedance/Next-ViT
## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('nextvit_base.bd_ssld_6m_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```
### Feature Map Extraction
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'nextvit_base.bd_ssld_6m_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 96, 56, 56])
# torch.Size([1, 256, 28, 28])
# torch.Size([1, 512, 14, 14])
# torch.Size([1, 1024, 7, 7])
print(o.shape)
```
### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'nextvit_base.bd_ssld_6m_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1024, 7, 7) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
```
## Model Comparison
### By Top-1
|model |top1 |top1_err|top5 |top5_err|param_count|
|---------------------------------|------|--------|------|--------|-----------|
|nextvit_large.bd_ssld_6m_in1k_384|86.542|13.458 |98.142|1.858 |57.87 |
|nextvit_base.bd_ssld_6m_in1k_384 |86.352|13.648 |98.04 |1.96 |44.82 |
|nextvit_small.bd_ssld_6m_in1k_384|85.964|14.036 |97.908|2.092 |31.76 |
|nextvit_large.bd_ssld_6m_in1k |85.48 |14.52 |97.696|2.304 |57.87 |
|nextvit_base.bd_ssld_6m_in1k |85.186|14.814 |97.59 |2.41 |44.82 |
|nextvit_large.bd_in1k_384 |84.924|15.076 |97.294|2.706 |57.87 |
|nextvit_small.bd_ssld_6m_in1k |84.862|15.138 |97.382|2.618 |31.76 |
|nextvit_base.bd_in1k_384 |84.706|15.294 |97.224|2.776 |44.82 |
|nextvit_small.bd_in1k_384 |84.022|15.978 |96.99 |3.01 |31.76 |
|nextvit_large.bd_in1k |83.626|16.374 |96.694|3.306 |57.87 |
|nextvit_base.bd_in1k |83.472|16.528 |96.656|3.344 |44.82 |
|nextvit_small.bd_in1k |82.61 |17.39 |96.226|3.774 |31.76 |
## Citation
```bibtex
@article{li2022next,
title={Next-ViT: Next Generation Vision Transformer for Efficient Deployment in Realistic Industrial Scenarios},
author={Li, Jiashi and Xia, Xin and Li, Wei and Li, Huixia and Wang, Xing and Xiao, Xuefeng and Wang, Rui and Zheng, Min and Pan, Xin},
journal={arXiv preprint arXiv:2207.05501},
year={2022}
}
```
|