File size: 4,033 Bytes
6fc943e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
---
tags:
- image-classification
- timm
library_tag: timm
license: apache-2.0
datasets:
- imagenet-1k
---
# Model card for levit_256.fb_dist_in1k
A LeViT image classification model using convolutional mode (using nn.Conv2d and nn.BatchNorm2d). Pretrained on ImageNet-1k using distillation by paper authors.
## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
- Params (M): 18.9
- GMACs: 1.1
- Activations (M): 4.2
- Image size: 224 x 224
- **Papers:**
- LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference: https://arxiv.org/abs/2104.01136
- **Original:** https://github.com/facebookresearch/LeViT
- **Dataset:** ImageNet-1k
## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
model = timm.create_model('levit_256.fb_dist_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```
### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
model = timm.create_model(
'levit_256.fb_dist_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled (ie.e a (batch_size, num_features, H, W) tensor
output = model.forward_head(output, pre_logits=True)
# output is (batch_size, num_features) tensor
```
## Model Comparison
|model |top1 |top5 |param_count|img_size|
|-----------------------------------|------|------|-----------|--------|
|levit_384.fb_dist_in1k |82.596|96.012|39.13 |224 |
|levit_conv_384.fb_dist_in1k |82.596|96.012|39.13 |224 |
|levit_256.fb_dist_in1k |81.512|95.48 |18.89 |224 |
|levit_conv_256.fb_dist_in1k |81.512|95.48 |18.89 |224 |
|levit_conv_192.fb_dist_in1k |79.86 |94.792|10.95 |224 |
|levit_192.fb_dist_in1k |79.858|94.792|10.95 |224 |
|levit_128.fb_dist_in1k |78.474|94.014|9.21 |224 |
|levit_conv_128.fb_dist_in1k |78.474|94.02 |9.21 |224 |
|levit_128s.fb_dist_in1k |76.534|92.864|7.78 |224 |
|levit_conv_128s.fb_dist_in1k |76.532|92.864|7.78 |224 |
## Citation
```bibtex
@InProceedings{Graham_2021_ICCV,
author = {Graham, Benjamin and El-Nouby, Alaaeldin and Touvron, Hugo and Stock, Pierre and Joulin, Armand and Jegou, Herve and Douze, Matthijs},
title = {LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021},
pages = {12259-12269}
}
```
```bibtex
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}
```
|