timm
/

Image Classification
timm
PyTorch
Safetensors
File size: 4,717 Bytes
9c34bea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4748817
 
9c34bea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4748817
 
 
 
 
 
 
 
 
 
9c34bea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
---
tags:
- image-classification
- timm
library_name: timm
license: cc-by-nc-4.0
datasets:
- imagenet-1k
---
# Model card for hiera_tiny_224.mae

A Hiera image feature model. Pretrained on ImageNet-1k with Self-Supervised Masked Autoencoder (MAE) method by paper authors.



## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
  - Params (M): 27.1
  - GMACs: 4.7
  - Activations (M): 14.6
  - Image size: 224 x 224
- **Dataset:** ImageNet-1k
- **Papers:**
  - Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles: https://arxiv.org/abs/2306.00989
  - Masked Autoencoders Are Scalable Vision Learners: https://arxiv.org/abs/2111.06377
- **Original:** https://github.com/facebookresearch/hiera

## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('hiera_tiny_224.mae', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```

### Feature Map Extraction
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'hiera_tiny_224.mae',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 96, 56, 56])
    #  torch.Size([1, 192, 28, 28])
    #  torch.Size([1, 384, 14, 14])
    #  torch.Size([1, 768, 7, 7])

    print(o.shape)
```

### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'hiera_tiny_224.mae',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 49, 768) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
```

## Model Comparison
### By Top-1

|model                            |top1  |top5  |param_count|
|---------------------------------|------|------|-----------|
|hiera_huge_224.mae_in1k_ft_in1k     |86.834|98.01 |672.78     |
|hiera_large_224.mae_in1k_ft_in1k    |86.042|97.648|213.74     |
|hiera_base_plus_224.mae_in1k_ft_in1k|85.134|97.158|69.9       |
|hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k    |84.912|97.260|35.01      |
|hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k |84.560|97.106|35.01      |
|hiera_base_224.mae_in1k_ft_in1k     |84.49 |97.032|51.52      |
|hiera_small_224.mae_in1k_ft_in1k    |83.884|96.684|35.01      |
|hiera_tiny_224.mae_in1k_ft_in1k     |82.786|96.204|27.91      |

## Citation
```bibtex
@article{ryali2023hiera,
  title={Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles},
  author={Ryali, Chaitanya and Hu, Yuan-Ting and Bolya, Daniel and Wei, Chen and Fan, Haoqi and Huang, Po-Yao and Aggarwal, Vaibhav and Chowdhury, Arkabandhu and Poursaeed, Omid and Hoffman, Judy and Malik, Jitendra and Li, Yanghao and Feichtenhofer, Christoph},
  journal={ICML},
  year={2023}
}
```
```bibtex
@Article{MaskedAutoencoders2021,
  author  = {Kaiming He and Xinlei Chen and Saining Xie and Yanghao Li and Piotr Doll{'a}r and Ross Girshick},
  journal = {arXiv:2111.06377},
  title   = {Masked Autoencoders Are Scalable Vision Learners},
  year    = {2021},
}
```