timm
/

Model card for ViT-B-16-SigLIP

A SigLIP (Sigmoid loss for Language-Image Pre-training) model trained on WebLI.

This model has been converted to PyTorch from the original JAX checkpoints in Big Vision. These weights are usable in both OpenCLIP (image + text) and timm (image only).

Model Details

Model Usage

With OpenCLIP

import torch
import torch.nn.functional as F
from urllib.request import urlopen
from PIL import Image
from open_clip import create_model_from_pretrained, get_tokenizer # works on open-clip-torch>=2.23.0, timm>=0.9.8

model, preprocess = create_model_from_pretrained('hf-hub:timm/ViT-B-16-SigLIP')
tokenizer = get_tokenizer('hf-hub:timm/ViT-B-16-SigLIP')

image = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
image = preprocess(image).unsqueeze(0)

labels_list = ["a dog", "a cat", "a donut", "a beignet"]
text = tokenizer(labels_list, context_length=model.context_length)

with torch.no_grad(), torch.cuda.amp.autocast():
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)
    image_features = F.normalize(image_features, dim=-1)
    text_features = F.normalize(text_features, dim=-1)

    text_probs = torch.sigmoid(image_features @ text_features.T * model.logit_scale.exp() + model.logit_bias)

zipped_list = list(zip(labels_list, [round(p.item(), 3) for p in text_probs[0]]))
print("Label probabilities: ", zipped_list)

With timm (for image embeddings)

from urllib.request import urlopen
from PIL import Image
import timm

image = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'vit_base_patch16_siglip_224',
    pretrained=True,
    num_classes=0,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(image).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

Citation

@article{zhai2023sigmoid,
  title={Sigmoid loss for language image pre-training},
  author={Zhai, Xiaohua and Mustafa, Basil and Kolesnikov, Alexander and Beyer, Lucas},
  journal={arXiv preprint arXiv:2303.15343},
  year={2023}
}
@misc{big_vision,
  author = {Beyer, Lucas and Zhai, Xiaohua and Kolesnikov, Alexander},
  title = {Big Vision},
  year = {2022},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/google-research/big_vision}}
}
Downloads last month
44,454
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using timm/ViT-B-16-SigLIP 1