metadata
language:
- en
- fr
- es
- pt
tags:
- falcon3
Falcon3-7B-Instruct
Falcon3 family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B.
This repository contains the Falcon3-7B-Instruct. It achieves state of art results (at release's time) on reasoning, language understanding, instruction following, code and mathematics tasks. Falcon3-7B-Instruct supports 4 languages (english, french, spanish, portuguese) and a context length up to 32K.
Model Details
- Architecture
- transformer based causal decoder only architecture
- 28 decoder blocks
- grouped query attention (GQA) for faster inference: 12 query heads and 4 KV heads
- wider head dimension: 256
- high RoPE value to support long context understanding: 1000042
- 32k context length
- 131k vocab size
- Pretrained on 14 Gigatokens of datasets comprising of web, code, STEM, high quality and mutlilingual data using 2048 H100 GPU chips
- Postrained on 1.2 million samples of STEM, conversations, code, safety and function call data
- Supports EN, FR, ES, PT
- Developed by Technology Innovation Institute
- License: TII Falcon-LLM License 2.0
- Model Release Date: December 2024
Getting started
Click to expand
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "tiiuae/Falcon3-7B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many hours in one day?"
messages = [
{"role": "system", "content": "You are a helpful friendly assistant Falcon3 from TII, try to follow instructions as much as possible."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=1024
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
Benchmarks
We report in the following table our internal pipeline benchmarks:
Category | Benchmark | Llama-3.1-8B-Instruct | Qwen2-7B-Instruct | Qwen2.5-7B-Instruct | gemma-2-9b-it | Falcon3-7B-Instruct |
---|---|---|---|---|---|---|
General | MMLU (5-shot) | - | - | - | - | - |
MMLU-PRO (5-shot) | - | - | - | - | - | |
IFEval | - | - | - | - | - | |
Math | GSM8K (5-shot) | - | - | - | - | - |
MATH(4-shot) | - | - | - | - | - | |
Reasoning | Arc Challenge (25-shot) | - | - | - | - | - |
GPQA (0-shot) | - | - | - | - | - | |
MUSR (0-shot) | - | - | - | - | - | |
BBH (3-shot) | - | - | - | - | - | |
CommonSense Understanding | PIQA (0-shot) | - | - | - | - | - |
SciQ (0-shot) | - | - | - | - | - | |
Winogrande (0-shot) | - | - | - | - | - | |
OpenbookQA (0-shot) | - | - | - | - | - |
Citation
If Falcon3 family were helpful to your work, feel free to give us a cite.
@misc{Falcon3,
title = {Falcon 3 family of Open Foundation Models},
author = {TII Team},
month = {December},
year = {2024}
}