Edit model card

newsdata-bertimbal

This model is a fine-tuned version of neuralmind/bert-base-portuguese-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2924
  • Accuracy: 0.9183
  • Precision: 0.9118
  • F1: 0.9144
  • Recall: 0.9183

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision F1 Recall
0.7154 0.1024 1000 0.5830 0.856 0.8352 0.8399 0.856
0.5232 0.2048 2000 0.4769 0.874 0.8647 0.8633 0.874
0.4342 0.3071 3000 0.3966 0.891 0.8800 0.8826 0.891
0.3969 0.4095 4000 0.3509 0.9023 0.8900 0.8949 0.9023
0.3719 0.5119 5000 0.3263 0.9102 0.9055 0.9054 0.9102
0.3638 0.6143 6000 0.3209 0.909 0.9017 0.9035 0.909
0.3217 0.7166 7000 0.3131 0.9068 0.9025 0.9034 0.9068
0.3169 0.8190 8000 0.2952 0.9167 0.9101 0.9125 0.9167
0.3147 0.9214 9000 0.2924 0.9183 0.9118 0.9144 0.9183

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
17
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tiagoblima/newsdata-bertimbal

Finetuned
(98)
this model