checkpoints
This model is a fine-tuned version of vumichien/wav2vec2-large-xlsr-japanese-hiragana on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4134
- Wer: 0.1884
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 3
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 75
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.4299 | 1.0 | 247 | 0.7608 | 0.4853 |
0.8045 | 2.0 | 494 | 0.6603 | 0.4449 |
0.6061 | 3.0 | 741 | 0.5527 | 0.4233 |
0.4372 | 4.0 | 988 | 0.6262 | 0.4029 |
0.3226 | 5.0 | 1235 | 0.4528 | 0.3462 |
0.2581 | 6.0 | 1482 | 0.4961 | 0.3226 |
0.2147 | 7.0 | 1729 | 0.4856 | 0.3075 |
0.1736 | 8.0 | 1976 | 0.4372 | 0.3063 |
0.1488 | 9.0 | 2223 | 0.3771 | 0.2761 |
0.1286 | 10.0 | 2470 | 0.4373 | 0.2590 |
0.1118 | 11.0 | 2717 | 0.3840 | 0.2594 |
0.1037 | 12.0 | 2964 | 0.4241 | 0.2590 |
0.0888 | 13.0 | 3211 | 0.4150 | 0.2410 |
0.0923 | 14.0 | 3458 | 0.3811 | 0.2524 |
0.0813 | 15.0 | 3705 | 0.4164 | 0.2459 |
0.0671 | 16.0 | 3952 | 0.3498 | 0.2288 |
0.0669 | 17.0 | 4199 | 0.3697 | 0.2247 |
0.0586 | 18.0 | 4446 | 0.3550 | 0.2251 |
0.0533 | 19.0 | 4693 | 0.4024 | 0.2231 |
0.0542 | 20.0 | 4940 | 0.4130 | 0.2121 |
0.0532 | 21.0 | 5187 | 0.3464 | 0.2231 |
0.0451 | 22.0 | 5434 | 0.3346 | 0.1966 |
0.0413 | 23.0 | 5681 | 0.4599 | 0.2088 |
0.0401 | 24.0 | 5928 | 0.4031 | 0.2162 |
0.0345 | 25.0 | 6175 | 0.3726 | 0.2084 |
0.033 | 26.0 | 6422 | 0.4619 | 0.2076 |
0.0366 | 27.0 | 6669 | 0.4071 | 0.2202 |
0.0343 | 28.0 | 6916 | 0.4114 | 0.2088 |
0.0319 | 29.0 | 7163 | 0.3605 | 0.2015 |
0.0304 | 30.0 | 7410 | 0.4097 | 0.2015 |
0.0253 | 31.0 | 7657 | 0.4152 | 0.1970 |
0.0235 | 32.0 | 7904 | 0.3829 | 0.2043 |
0.0255 | 33.0 | 8151 | 0.3976 | 0.2011 |
0.0201 | 34.0 | 8398 | 0.4247 | 0.2088 |
0.022 | 35.0 | 8645 | 0.3831 | 0.1945 |
0.0175 | 36.0 | 8892 | 0.3838 | 0.2007 |
0.0201 | 37.0 | 9139 | 0.4377 | 0.1986 |
0.0176 | 38.0 | 9386 | 0.4546 | 0.2043 |
0.021 | 39.0 | 9633 | 0.4341 | 0.2039 |
0.0191 | 40.0 | 9880 | 0.4043 | 0.1937 |
0.0159 | 41.0 | 10127 | 0.4098 | 0.2064 |
0.0148 | 42.0 | 10374 | 0.4027 | 0.1905 |
0.0129 | 43.0 | 10621 | 0.4104 | 0.1933 |
0.0123 | 44.0 | 10868 | 0.3738 | 0.1925 |
0.0159 | 45.0 | 11115 | 0.3946 | 0.1933 |
0.0091 | 46.0 | 11362 | 0.3971 | 0.1880 |
0.0082 | 47.0 | 11609 | 0.4042 | 0.1986 |
0.0108 | 48.0 | 11856 | 0.4092 | 0.1884 |
0.0123 | 49.0 | 12103 | 0.3674 | 0.1941 |
0.01 | 50.0 | 12350 | 0.3750 | 0.1876 |
0.0094 | 51.0 | 12597 | 0.3781 | 0.1831 |
0.008 | 52.0 | 12844 | 0.4051 | 0.1852 |
0.0079 | 53.0 | 13091 | 0.3981 | 0.1937 |
0.0068 | 54.0 | 13338 | 0.4425 | 0.1929 |
0.0061 | 55.0 | 13585 | 0.4183 | 0.1986 |
0.0074 | 56.0 | 13832 | 0.3502 | 0.1880 |
0.0071 | 57.0 | 14079 | 0.3908 | 0.1892 |
0.0079 | 58.0 | 14326 | 0.3908 | 0.1913 |
0.0042 | 59.0 | 14573 | 0.3801 | 0.1864 |
0.0049 | 60.0 | 14820 | 0.4065 | 0.1839 |
0.0063 | 61.0 | 15067 | 0.4170 | 0.1900 |
0.0049 | 62.0 | 15314 | 0.3903 | 0.1856 |
0.0031 | 63.0 | 15561 | 0.4042 | 0.1896 |
0.0054 | 64.0 | 15808 | 0.3890 | 0.1839 |
0.0061 | 65.0 | 16055 | 0.3831 | 0.1847 |
0.0052 | 66.0 | 16302 | 0.3898 | 0.1847 |
0.0032 | 67.0 | 16549 | 0.4230 | 0.1831 |
0.0017 | 68.0 | 16796 | 0.4241 | 0.1823 |
0.0022 | 69.0 | 17043 | 0.4360 | 0.1856 |
0.0026 | 70.0 | 17290 | 0.4233 | 0.1815 |
0.0028 | 71.0 | 17537 | 0.4225 | 0.1835 |
0.0018 | 72.0 | 17784 | 0.4163 | 0.1856 |
0.0034 | 73.0 | 18031 | 0.4120 | 0.1876 |
0.0019 | 74.0 | 18278 | 0.4129 | 0.1876 |
0.0023 | 75.0 | 18525 | 0.4134 | 0.1884 |
Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 1.18.3
- Tokenizers 0.12.1
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.