Edit model card

checkpoints

This model is a fine-tuned version of vumichien/wav2vec2-large-xlsr-japanese-hiragana on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4134
  • Wer: 0.1884

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 3
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 6
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 75
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.4299 1.0 247 0.7608 0.4853
0.8045 2.0 494 0.6603 0.4449
0.6061 3.0 741 0.5527 0.4233
0.4372 4.0 988 0.6262 0.4029
0.3226 5.0 1235 0.4528 0.3462
0.2581 6.0 1482 0.4961 0.3226
0.2147 7.0 1729 0.4856 0.3075
0.1736 8.0 1976 0.4372 0.3063
0.1488 9.0 2223 0.3771 0.2761
0.1286 10.0 2470 0.4373 0.2590
0.1118 11.0 2717 0.3840 0.2594
0.1037 12.0 2964 0.4241 0.2590
0.0888 13.0 3211 0.4150 0.2410
0.0923 14.0 3458 0.3811 0.2524
0.0813 15.0 3705 0.4164 0.2459
0.0671 16.0 3952 0.3498 0.2288
0.0669 17.0 4199 0.3697 0.2247
0.0586 18.0 4446 0.3550 0.2251
0.0533 19.0 4693 0.4024 0.2231
0.0542 20.0 4940 0.4130 0.2121
0.0532 21.0 5187 0.3464 0.2231
0.0451 22.0 5434 0.3346 0.1966
0.0413 23.0 5681 0.4599 0.2088
0.0401 24.0 5928 0.4031 0.2162
0.0345 25.0 6175 0.3726 0.2084
0.033 26.0 6422 0.4619 0.2076
0.0366 27.0 6669 0.4071 0.2202
0.0343 28.0 6916 0.4114 0.2088
0.0319 29.0 7163 0.3605 0.2015
0.0304 30.0 7410 0.4097 0.2015
0.0253 31.0 7657 0.4152 0.1970
0.0235 32.0 7904 0.3829 0.2043
0.0255 33.0 8151 0.3976 0.2011
0.0201 34.0 8398 0.4247 0.2088
0.022 35.0 8645 0.3831 0.1945
0.0175 36.0 8892 0.3838 0.2007
0.0201 37.0 9139 0.4377 0.1986
0.0176 38.0 9386 0.4546 0.2043
0.021 39.0 9633 0.4341 0.2039
0.0191 40.0 9880 0.4043 0.1937
0.0159 41.0 10127 0.4098 0.2064
0.0148 42.0 10374 0.4027 0.1905
0.0129 43.0 10621 0.4104 0.1933
0.0123 44.0 10868 0.3738 0.1925
0.0159 45.0 11115 0.3946 0.1933
0.0091 46.0 11362 0.3971 0.1880
0.0082 47.0 11609 0.4042 0.1986
0.0108 48.0 11856 0.4092 0.1884
0.0123 49.0 12103 0.3674 0.1941
0.01 50.0 12350 0.3750 0.1876
0.0094 51.0 12597 0.3781 0.1831
0.008 52.0 12844 0.4051 0.1852
0.0079 53.0 13091 0.3981 0.1937
0.0068 54.0 13338 0.4425 0.1929
0.0061 55.0 13585 0.4183 0.1986
0.0074 56.0 13832 0.3502 0.1880
0.0071 57.0 14079 0.3908 0.1892
0.0079 58.0 14326 0.3908 0.1913
0.0042 59.0 14573 0.3801 0.1864
0.0049 60.0 14820 0.4065 0.1839
0.0063 61.0 15067 0.4170 0.1900
0.0049 62.0 15314 0.3903 0.1856
0.0031 63.0 15561 0.4042 0.1896
0.0054 64.0 15808 0.3890 0.1839
0.0061 65.0 16055 0.3831 0.1847
0.0052 66.0 16302 0.3898 0.1847
0.0032 67.0 16549 0.4230 0.1831
0.0017 68.0 16796 0.4241 0.1823
0.0022 69.0 17043 0.4360 0.1856
0.0026 70.0 17290 0.4233 0.1815
0.0028 71.0 17537 0.4225 0.1835
0.0018 72.0 17784 0.4163 0.1856
0.0034 73.0 18031 0.4120 0.1876
0.0019 74.0 18278 0.4129 0.1876
0.0023 75.0 18525 0.4134 0.1884

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.11.0+cu113
  • Datasets 1.18.3
  • Tokenizers 0.12.1
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.