File size: 23,962 Bytes
729e0ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d809d25
729e0ea
d809d25
729e0ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
from typing import Optional, Tuple, List, Union
import torch
from torch import nn
import torch.nn.functional as F
from transformers import PreTrainedModel, Cache, DynamicCache
from transformers.activations import ACT2FN
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
from transformers.modeling_outputs import MoeModelOutputWithPast, MoeCausalLMOutputWithPast
from .configuration_timer import TimerConfig
from .ts_generation_mixin import TSGenerationMixin


def rotate_half(x):
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2:]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
    cos = cos[position_ids].unsqueeze(unsqueeze_dim)
    sin = sin[position_ids].unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


class TimerPatchEmbedding(nn.Module):
    def __init__(self, config: TimerConfig):
        super().__init__()
        self.input_token_len = config.input_token_len
        self.emb = nn.Linear(config.input_token_len,
                             config.hidden_size, bias=False)

    def forward(self, hidden_state: torch.Tensor):
        hidden_state = hidden_state.unfold(
            dimension=-1, size=self.input_token_len, step=self.input_token_len)
        return self.emb(hidden_state)


class TimerPointEmbedding(nn.Module):
    def __init__(self, config: TimerConfig):
        super().__init__()
        self.emb_layer = nn.Linear(
            config.input_token_len, config.hidden_size, bias=False)
        self.gate_layer = nn.Linear(
            config.input_token_len, config.hidden_size, bias=False)
        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, x):
        emb = self.act_fn(self.gate_layer(x)) * self.emb_layer(x)
        return emb


class TimeMoeRotaryEmbedding(torch.nn.Module):
    def __init__(self, dim, max_position_embeddings=10000, base=10000, device=None):
        super().__init__()
        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim,
                          2, dtype=torch.int64).float().to(device) / self.dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

        # Build here to make `torch.jit.trace` work.
        self._set_cos_sin_cache(
            seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
        )

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len
        t = torch.arange(self.max_seq_len_cached, device=device,
                         dtype=torch.int64).type_as(self.inv_freq)

        freqs = torch.outer(t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer(
            "cos_cached", emb.cos().to(dtype), persistent=False)
        self.register_buffer(
            "sin_cached", emb.sin().to(dtype), persistent=False)

    def forward(self, x, seq_len=None):
        # x: [bs, num_attention_heads, seq_len, head_size]
        if seq_len > self.max_seq_len_cached:
            self._set_cos_sin_cache(
                seq_len=seq_len, device=x.device, dtype=x.dtype)

        return (
            self.cos_cached[:seq_len].to(dtype=x.dtype),
            self.sin_cached[:seq_len].to(dtype=x.dtype),
        )


class TimerAttention(nn.Module):
    def __init__(self, config: TimerConfig, layer_idx: Optional[int] = None):
        super().__init__()
        self.layer_idx = layer_idx
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.attention_dropout = config.attention_dropout
        self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
        self.k_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
        self.v_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
        self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
        self.rotary_emb = TimeMoeRotaryEmbedding(
            self.head_dim, max_position_embeddings=config.max_position_embeddings)

    def forward(
            self,
            hidden_states: torch.Tensor,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_value: Optional[Cache] = None,
            output_attentions: bool = False,
            **kwargs,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(
            bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(
            bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(
            bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)

        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None:
            kv_seq_len += past_key_value.get_usable_length(
                kv_seq_len, self.layer_idx)
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
        query_states, key_states = apply_rotary_pos_emb(
            query_states, key_states, cos, sin, position_ids)

        if past_key_value is not None:
            key_states, value_states = past_key_value.update(
                key_states, value_states, self.layer_idx)

        attn_output = F.scaled_dot_product_attention(
            query_states, key_states, value_states, attention_mask, dropout_p=self.attention_dropout)

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value


class TimerMLP(nn.Module):
    def __init__(self, hidden_size: int, intermediate_size: int, hidden_act: str):
        super().__init__()
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.gate_proj = nn.Linear(
            self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(
            self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(
            self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = ACT2FN[hidden_act]

    def forward(self, hidden_state):
        return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))


class TimerDecoderLayer(nn.Module):
    def __init__(self, config: TimerConfig, layer_idx: int):
        super().__init__()
        self.self_attn = TimerAttention(config, layer_idx)

        self.ffn_layer = TimerMLP(
            hidden_size=config.hidden_size,
            intermediate_size=config.intermediate_size,
            hidden_act=config.hidden_act,
        )
        self.norm1 = torch.nn.LayerNorm(config.hidden_size)
        self.norm2 = torch.nn.LayerNorm(config.hidden_size)

    def forward(
            self,
            hidden_states: torch.Tensor,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_value: Optional[Tuple[torch.Tensor]] = None,
            output_attentions: Optional[bool] = False,
            use_cache: Optional[bool] = False,
            **kwargs,
    ) -> Tuple[torch.FloatTensor, torch.FloatTensor, Optional[torch.FloatTensor], Optional[torch.FloatTensor]]:
        residual = hidden_states

        # Self Attention
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
        )
        hidden_states = residual + hidden_states
        hidden_states = self.norm1(hidden_states)

        # Fully Connected
        residual = hidden_states
        hidden_states = self.ffn_layer(hidden_states)
        hidden_states = residual + hidden_states
        hidden_states = self.norm2(hidden_states)

        if not output_attentions:
            self_attn_weights = None

        if not use_cache:
            present_key_value = None
        return hidden_states, self_attn_weights, present_key_value


class TimerPreTrainedModel(PreTrainedModel):
    config_class = TimerConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["TimeMoeDecoderLayer"]
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True
    _supports_sdpa = False
    _supports_cache_class = True

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, torch.nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, torch.nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()


class TimerModel(TimerPreTrainedModel):
    def __init__(self, config: TimerConfig):
        super().__init__(config)
        self.embed_layer = TimerPatchEmbedding(config)
        self.layers = nn.ModuleList(
            [TimerDecoderLayer(config, layer_idx)
             for layer_idx in range(config.num_hidden_layers)]
        )
        self.norm = torch.nn.LayerNorm(config.hidden_size)
        self.gradient_checkpointing = False

    def forward(
            self,
            input_ids: torch.FloatTensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ) -> Union[Tuple, MoeModelOutputWithPast]:
        # input_ids is the input of time series, its shape is [batch_size, seq_len]
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError(
                "You have to specify either decoder_input_ids or decoder_inputs_embeds")

        if inputs_embeds is None:
            inputs_embeds = self.embed_layer(input_ids)
            seq_length = inputs_embeds.shape[1]

        if self.gradient_checkpointing and self.training:
            if use_cache:
                use_cache = False

        past_key_values_length = 0

        if use_cache:
            use_legacy_cache = not isinstance(past_key_values, Cache)
            if use_legacy_cache:
                past_key_values = DynamicCache.from_legacy_cache(
                    past_key_values)
            past_key_values_length = past_key_values.get_usable_length(
                seq_length)

        if position_ids is None:
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            position_ids = torch.arange(
                past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
            )
            # position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
            position_ids = position_ids.view(-1, seq_length)
        else:
            position_ids = position_ids.view(-1, seq_length).long()

        # 4d mask is passed through the layers
        attention_mask = _prepare_4d_causal_attention_mask(
            attention_mask,
            (batch_size, seq_length),
            inputs_embeds,
            past_key_values_length,
            sliding_window=None,
        )

        hidden_states = inputs_embeds

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = None

        for decoder_layer in self.layers:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    attention_mask,
                    position_ids,
                    past_key_values,
                    output_attentions,
                    use_cache,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                )

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

            if use_cache:
                next_decoder_cache = layer_outputs[2]

        hidden_states = self.norm(hidden_states)
        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = None
        if use_cache:
            next_cache = next_decoder_cache.to_legacy_cache(
            ) if use_legacy_cache else next_decoder_cache

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
                if v is not None
            )
        return MoeModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )


class TimerForPrediction(TimerPreTrainedModel, TSGenerationMixin):
    def __init__(self, config: TimerConfig):
        super().__init__(config)
        self.config = config
        self.model = TimerModel(self.config)
        lm_head_list = []
        self.output_token_len_map = {}
        for i, output_token_len in enumerate(self.config.output_token_lens):
            lm_head_list.append(
                nn.Linear(self.config.hidden_size, output_token_len, bias=False))
            self.output_token_len_map[output_token_len] = i
        self.lm_heads = nn.ModuleList(lm_head_list)
        self.loss_function = torch.nn.MSELoss(reduction='none')
        self.post_init()

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    def forward(
            self,
            input_ids: torch.FloatTensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            labels: Optional[torch.FloatTensor] = None,
            loss_masks: Optional[torch.FloatTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            max_output_length: Optional[int] = None,
            revin: Optional[bool] = False,
    ) -> Union[Tuple, MoeCausalLMOutputWithPast]:

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        
        if revin:
            mean, std = input_ids.mean(dim=-1, keepdim=True), input_ids.std(dim=-1, keepdim=True)
            input_ids = (input_ids - mean) / std
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0] if not return_dict else outputs.last_hidden_state
        predictions = None

        loss = None
        if labels is not None:
            ar_loss = 0.0
            for lm_head, output_token_len in zip(self.lm_heads, self.config.output_token_lens):
                one_predictions = lm_head(hidden_states)
                one_loss = self.calc_ar_loss(
                    one_predictions, labels, loss_masks, output_token_len)
                ar_loss += one_loss
                if predictions is None:
                    predictions = one_predictions
            loss = ar_loss / len(self.config.output_token_lens)
        else:
            if max_output_length is None:
                output_token_len = self.config.output_token_lens[0]
                max_output_length = output_token_len
            else:
                output_token_len = self.config.output_token_lens[0]
                for h in self.config.output_token_lens[1:]:
                    if h > max_output_length:
                        break
                    else:
                        output_token_len = h
            lm_head = self.lm_heads[self.output_token_len_map[output_token_len]]
            predictions = lm_head(hidden_states)[:, -1, :]
            if output_token_len > max_output_length:
                predictions = predictions[:, :max_output_length]
            if revin:
                predictions = predictions * std + mean 
        if not return_dict:
            output = (predictions,) + outputs[1:]
            return (loss) + output if loss is not None else output

        return MoeCausalLMOutputWithPast(
            loss=loss,
            logits=predictions,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def calc_ar_loss(self, predictions, labels, loss_masks, output_token_len):
        seq_len = predictions.shape[1] * self.config.input_token_len
        labels = labels[:, :seq_len -
                        self.config.input_token_len + output_token_len]
        shift_labels = labels.unfold(
            dimension=-1, size=output_token_len, step=self.config.input_token_len)

        # Calculate loss with mask
        losses = self.loss_function(predictions, shift_labels).mean(dim=-1)
        if loss_masks is not None:
            losses = losses * loss_masks
            loss = losses.sum() / loss_masks.sum()
        else:
            loss = torch.mean(losses)

        return loss

    def prepare_inputs_for_generation(
            self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, revin=True, **kwargs
    ):
        # Omit tokens covered by past_key_values
        if past_key_values is not None:
            if isinstance(past_key_values, Cache):
                cache_length = past_key_values.get_seq_length()
                if isinstance(past_key_values, DynamicCache):
                    past_length = past_key_values.seen_tokens
                else:
                    past_length = cache_length

                max_cache_length = past_key_values.get_max_length()
            else:
                cache_length = past_length = past_key_values[0][0].shape[2]
                max_cache_length = None

            # Keep only the unprocessed tokens:
            # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
            # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
            # input)
            if attention_mask is not None and attention_mask.shape[1] > (input_ids.shape[1] // self.config.input_token_len):
                input_ids = input_ids[:, -
                                      (attention_mask.shape[1] - past_length):]
            # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
            # input_ids based on the past_length.
            elif past_length < (input_ids.shape[1] // self.config.input_token_len):
                input_ids = input_ids[:, past_length *
                                      self.config.input_token_len:]
            # 3 - Otherwise (past_length >= (input_ids.shape[1] // self.config.input_token_len)), let's assume input_ids only has unprocessed tokens.

            # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
            if (
                    max_cache_length is not None
                    and attention_mask is not None
                    and cache_length + (input_ids.shape[1] // self.config.input_token_len) > max_cache_length
            ):
                attention_mask = attention_mask[:, -max_cache_length:]

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -
                                            (input_ids.shape[1] // self.config.input_token_len):]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "position_ids": position_ids,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
                "revin": revin
            }
        )
        return model_inputs