Main Results & Postprocessing for the APEBench paper
Check if git lfs is available
git lfs --version
Clone without large files (subsets or all data can be downloaded later)
GIT_LFS_SKIP_SMUDGE=1 git clone git@hf.co:thuerey-group/apebench-paper
Alternatively if you have ~250GB of free space, you can download all the data at once
git clone git@hf.co:thuerey-group/apebench-paper
Installation
Change into the cloned directory
cd apebench-paper
Activate LFS
git lfs install
Conda environment
conda create -n ape python=3.12
conda activate ape
pip install -U "jax[cuda12]"
pip install git+ssh://git@github.com/Ceyron/apebench@640020c08f466ab55169b5c3327e1c096e705a64
Pre-commit setup
pip install pre-commit
pre-commit install --install-hooks
Quickstart
(not used in the paper)
apebench studies/hello_world.py
Postprocessing with postprocessing/hello_world.ipynb
Download a subset of the data
Download pre-melted data
easiest and least resource intensive
git lfs pull -I melted/adv_varying_difficulty_nonlin_emulators
Or all melted data at once (~150MB)
git lfs pull -I melted/*
Download a post-processing notebook
git lfs pull -I postprocessing/adv_varying_difficulty_nonlin_emulators/postprocessing_adv_varying_difficulty_nonlin_emulators.ipynb
Download all eval data
Not recommended
git lfs pull -I results/raw/*
Download all network weights
Not recommended
git lfs pull -I results/network_weights/*
Download data needed for one study
Execute this Python script (for an example study)
import apebench
from studies.broad_comparison_1d import CONFIGS
raw_file_list, network_weights_list = apebench.run_study(CONFIGS, "results/")
file_list_together = ",".join(str(p) for p in raw_file_list)
network_weights_list_together = ",".join(str(p) for p in network_weights_list)
with open("download.sh", "w") as f:
f.write(f"git lfs pull -I {file_list_together}\n")
# f.write(f"git lfs pull -I {network_weights_list_together}\n")
Or directly from bash
python -c "import apebench; from studies.broad_comparison_1d import CONFIGS; raw_file_list, network_weights_list = apebench.run_study(CONFIGS, 'results/'); file_list_together = ','.join(str(p) for p in raw_file_list);
with open('download.sh', 'w') as f:
f.write(f'''git lfs pull -I '{file_list_together}'\n''')"
Then
bash download.sh
Melt and concatenate the data
(replace the path to the Python file with the study you want to process)
apebench studies/broad_comparison_1d.py
This can take anything from ~2min to 20min depending on the study. Also consider downloading the pre-melted data if you only need the results.
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.