Edit model card

ZH-CLIP: A Chinese CLIP Model

Hugging Face Spaces

Models

You can download ZH-CLIP model from 🤗 thu-ml/zh-clip-vit-roberta-large-patch14. The model structure is shown below:

Results

COCO-CN Retrieval (Official Test Set):

Model Text-to-Image Image-to-Text
R@1 R@5 R@10 Mean R@1 R@5 R@10 Mean
Clip-Chinese 22.60 50.04 65.24 45.96 22.8 49.8 64.1 45.57
mclip 56.51 83.57 90.79 76.95 59.9 87.3 94.1 80.43
Taiyi-CLIP 52.52 81.10 89.93 74.52 45.80 75.80 88.10 69.90
CN-CLIP 64.10 88.79 94.40 82.43 61.00 84.40 93.10 79.5
altclip-xlmr-l 62.87 87.18 94.01 81.35 63.3 88.3 95.3 82.3
ZH-CLIP 68.00 89.46 95.44 84.30 68.50 90.10 96.50 85.03

Flickr30K-CN Retrieval (Official Test Set):

Model Text-to-Image Image-to-Text
R@1 R@5 R@10 Mean R@1 R@5 R@10 Mean
Clip-Chinese 17.76 40.34 51.88 36.66 30.4 55.30 67.10 50.93
mclip 62.3 86.42 92.58 80.43 84.4 97.3 98.9 93.53
Taiyi-CLIP 53.5 80.5 87.24 73.75 65.4 90.6 95.7 83.9
CN-CLIP 67.98 89.54 94.46 83.99 81.2 96.6 98.2 92.0
altclip-xlmr-l 69.16 89.94 94.5 84.53 85.1 97.7 99.2 94.0
ZH-CLIP 69.64 90.14 94.3 84.69 86.6 97.6 98.8 94.33

Muge Text-to-Image Retrieval (Official Validation Set):

Model Text-to-Image
R@1 R@5 R@10 Mean
Clip-Chinese 15.06 34.96 46.21 32.08
mclip 22.34 41.15 50.26 37.92
Taiyi-CLIP 42.09 67.75 77.21 62.35
cn-clip 56.25 79.87 86.50 74.21
altclip-xlmr-l 29.69 49.92 58.87 46.16
ZH-CLIP 56.75 79.75 86.66 74.38

Zero-shot Image Classification:

Model Zero-shot Classification (ACC1)
CIFAR10 CIFAR100 DTD EuroSAT FER FGVC KITTI MNIST PC VOC ImageNet
Clip-Chinese 86.85 44.21 18.40 34.86 14.21 3.87 32.63 14.37 52.49 67.73 22.22
mclip 92.88 65.54 29.57 46.76 41.18 7.20 23.21 52.80 51.64 77.56 42.99
Taiyi-CLIP 95.62 73.30 40.69 61.62 36.22 13.98 41.21 73.91 50.02 75.28 49.82
CN-CLIP 94.75 75.04 44.73 52.34 48.57 20.55 20.11 61.99 62.59 79.12 53.40
Altclip-xlmr-l 95.49 77.29 42.07 56.96 51.52 26.85 24.89 65.68 50.02 77.99 59.21
ZH-CLIP 97.08 80.73 47.66 51.58 48.48 20.73 20.11 61.94 62.31 78.07 56.87

Getting Started

Dependency

  • python >= 3.9
  • pip install -r requirements.txt

Inference

You can clone code from https://github.com/thu-ml/zh-clip

from PIL import Image
import requests
from models.zhclip import ZhCLIPProcessor, ZhCLIPModel  # Code in https://github.com/thu-ml/zh-clip

version = 'thu-ml/zh-clip-vit-roberta-large-patch14'
model = ZhCLIPModel.from_pretrained(version)
processor = ZhCLIPProcessor.from_pretrained(version)

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(text=["一只猫", "一只狗"], images=image, return_tensors="pt", padding=True)

outputs = model(**inputs)
image_features = outputs.image_features
text_features = outputs.text_features
text_probs = (image_features @ text_features.T).softmax(dim=-1)

Other Chinese CLIP Models

In addition, to compare the effectiveness of different methods, the inference methods of other Chinese CLIP models have been integrated. For the convenience of use, the inference code has also been made public, and please contact us if there is any infringement. The code only implements models at the same level as clip-vit-large-patch14, but it may be adapted for the use of more different versions of models in the future.

# model alias
0 ZH-CLIP zhclip
1 AltCLIP altclip
2 Chinese-CLIP cnclip
3 TaiyiCLIP taiyiclip
4 Multilingual-CLIP mclip
5 CLIP-Chinese clip-chinese

Usage in inference.py

Downloads last month
48
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Space using thu-ml/zh-clip-vit-roberta-large-patch14 1