File size: 2,464 Bytes
df3d0fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- generated_from_trainer
model-index:
- name: Mistral_Sparse_refined_web_50p_2024-03-21
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Mistral_Sparse_refined_web_50p_2024-03-21

This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1512

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 0
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 4
- total_train_batch_size: 12
- total_eval_batch_size: 3
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 501

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.4177        | 0.0   | 25   | 2.6401          |
| 2.5407        | 0.01  | 50   | 2.5820          |
| 2.3887        | 0.01  | 75   | 2.5299          |
| 2.2849        | 0.01  | 100  | 2.4991          |
| 2.2042        | 0.01  | 125  | 2.4802          |
| 2.2574        | 0.02  | 150  | 2.4609          |
| 2.2353        | 0.02  | 175  | 2.4473          |
| 2.3355        | 0.02  | 200  | 2.4449          |
| 2.3044        | 0.03  | 225  | 2.4381          |
| 2.2664        | 0.03  | 250  | 2.4348          |
| 2.1999        | 0.03  | 275  | 2.4263          |
| 2.2631        | 0.04  | 300  | 2.4247          |
| 2.2918        | 0.04  | 325  | 2.4184          |
| 2.1426        | 0.04  | 350  | 2.4185          |
| 2.149         | 0.04  | 375  | 2.4158          |
| 2.1937        | 0.05  | 400  | 2.4129          |
| 2.2372        | 0.05  | 425  | 2.4134          |
| 2.1997        | 0.05  | 450  | 2.4123          |
| 2.2937        | 0.06  | 475  | 2.4086          |
| 2.3067        | 0.06  | 500  | 2.4052          |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0