Uploaded model

  • Developed by: thesugar
  • License: CC-BY-NC-SA
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

HOW TO INFERENCE for competition evaluators

Google Colab L4 で実行

!pip install unsloth
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir --no-deps git+https://github.com/unslothai/unsloth.git

HF_TOKEN = # WRITE YOUR HF_TOKEN
ELYZA_TASKS_100_TV_JSONL_PATH = # WRITE
# Output for elyza-tasks-100-tv is saved as "output.jsonl"


from huggingface_hub import login
login(HF_TOKEN)

from unsloth import FastLanguageModel
import torch

max_seq_length = 2048
dtype = torch.bfloat16
load_in_4bit = True
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "thesugar/llm-jp-3-13b-it_lora-DPO-12-16",
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = load_in_4bit,
    token = HF_TOKEN,
)

import json
datasets = []
with open(ELYZA_TASKS_100_TV_JSONL_PATH, "r") as f:
    item = ""
    for line in f:
      line = line.strip()
      item += line
      if item.endswith("}"):
        datasets.append(json.loads(item))
        item = ""

from tqdm import tqdm

FastLanguageModel.for_inference(model)

results = []
for dt in tqdm(datasets):
  input = dt["input"]

  prompt = f"""### 指示\n{input}\n### 回答\n"""

  inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)

  outputs = model.generate(**inputs, max_new_tokens = 2048, use_cache = True, do_sample=False, repetition_penalty=1.2)
  prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]

  results.append({"task_id": dt["task_id"], "input": input, "output": prediction})

with open("output.jsonl", "w") as f:
  for r in results:
    f.write(json.dumps(r, ensure_ascii=False) + "\n")

Development steps

  • llm-jp/llm-jp-3-13b を量子化
  • インストラクションチューニング
    • ichikara-instruction データセットの ichikara-instruction-003-001-1.json の全データを使用
  • direct policy optimization
    • weblab-GENIAC/aya-ja-nemotron-dpo-masked からランダムに選択した 100 レコードを使用

Used datasets and their licenses

ichikara-instruction: LLMのための日本語インストラクションデータ

関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎. ichikara-instruction: LLMのための日本語インストラクションデータの構築. 言語処理学会第30回年次大会(2024) CC-BY-NC-SA

weblab-GENIAC/aya-ja-nemotron-dpo-masked

weblab-GENIAC
weblab-GENIAC/aya-ja-nemotron-dpo-masked
Apache License 2.0

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for thesugar/llm-jp-3-13b-it_lora-DPO-12-16

Finetuned
(1121)
this model

Dataset used to train thesugar/llm-jp-3-13b-it_lora-DPO-12-16