File size: 2,824 Bytes
46bafe7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
license: mit
base_model: wenbopan/Faro-Yi-9B
tags:
- generated_from_trainer
model-index:
- name: results/Faro-Yi-9B-DPO
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: wenbopan/Faro-Yi-9B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

is_llama_derived_model: true

load_in_8bit: false
load_in_4bit: false
strict: false

rl: dpo
datasets:
  - path: theIndividual/UltraInteractPair_axolotl
    split: train
    type: chatml

val_set_size: 0.1
output_dir: results/Faro-Yi-9B-DPO

sequence_len: 4096
sample_packing: false
pad_to_sequence_len: false

adapter: lora
lora_model_dir:

lora_r: 16
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_modules_to_save:
lora_fan_in_fan_out:
lora_target_modules:
  - k_proj
  - gate_proj
  - v_proj
  - up_proj
  - q_proj
  - o_proj
  - down_proj

wandb_project: faro-yi-dpo
wandb_entity:
wandb_name:

gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 1
optimizer: paged_adamw_8bit
adam_beta2: 0.95
adam_epsilion: 0.00001
lr_scheduler: linear
learning_rate: 1e-6

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
gradient_checkpoint_kwargs:
  use_reentrant: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
eval_steps:
eval_table_size:
eval_table_max_new_tokens: 128
save_steps: 45
debug:
deepspeed:
weight_decay: 0.1
special_tokens:
save_safetensors: true

dataloader_num_workers: 16
dataloader_pin_memory: true

```

</details><br>

# results/Faro-Yi-9B-DPO

This model is a fine-tuned version of [wenbopan/Faro-Yi-9B](https://huggingface.co/wenbopan/Faro-Yi-9B) on an unknown dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 109761

### Training results



### Framework versions

- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.17.1
- Tokenizers 0.15.0