File size: 2,824 Bytes
46bafe7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
---
license: mit
base_model: wenbopan/Faro-Yi-9B
tags:
- generated_from_trainer
model-index:
- name: results/Faro-Yi-9B-DPO
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: wenbopan/Faro-Yi-9B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
is_llama_derived_model: true
load_in_8bit: false
load_in_4bit: false
strict: false
rl: dpo
datasets:
- path: theIndividual/UltraInteractPair_axolotl
split: train
type: chatml
val_set_size: 0.1
output_dir: results/Faro-Yi-9B-DPO
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: false
adapter: lora
lora_model_dir:
lora_r: 16
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_modules_to_save:
lora_fan_in_fan_out:
lora_target_modules:
- k_proj
- gate_proj
- v_proj
- up_proj
- q_proj
- o_proj
- down_proj
wandb_project: faro-yi-dpo
wandb_entity:
wandb_name:
gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 1
optimizer: paged_adamw_8bit
adam_beta2: 0.95
adam_epsilion: 0.00001
lr_scheduler: linear
learning_rate: 1e-6
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
gradient_checkpoint_kwargs:
use_reentrant: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
eval_steps:
eval_table_size:
eval_table_max_new_tokens: 128
save_steps: 45
debug:
deepspeed:
weight_decay: 0.1
special_tokens:
save_safetensors: true
dataloader_num_workers: 16
dataloader_pin_memory: true
```
</details><br>
# results/Faro-Yi-9B-DPO
This model is a fine-tuned version of [wenbopan/Faro-Yi-9B](https://huggingface.co/wenbopan/Faro-Yi-9B) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 109761
### Training results
### Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.17.1
- Tokenizers 0.15.0
|