librarian-bot's picture
Librarian Bot: Add base_model information to model
1192754
|
raw
history blame
2.35 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
base_model: microsoft/resnet-50
model-index:
  - name: resnet-50-finetuned-eurosat
    results:
      - task:
          type: image-classification
          name: Image Classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - type: accuracy
            value: 0.8239812959251837
            name: Accuracy

resnet-50-finetuned-eurosat

This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9095
  • Accuracy: 0.8240

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.78 0.96 17 1.7432 0.4321
1.7105 1.96 34 1.6596 0.6307
1.6045 2.96 51 1.5369 0.6758
1.6526 3.96 68 1.4111 0.7139
1.4018 4.96 85 1.2686 0.7602
1.2812 5.96 102 1.1433 0.7714
1.3282 6.96 119 1.0643 0.7910
1.1246 7.96 136 0.9794 0.8133
1.0731 8.96 153 0.9279 0.8087
1.0531 9.96 170 0.9095 0.8240

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.1
  • Tokenizers 0.13.1