File size: 3,004 Bytes
0348455
 
 
 
4b1ccd6
0348455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b1ccd6
0348455
 
 
 
 
 
 
 
 
4b1ccd6
 
0348455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f12134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0348455
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-weldclassifyv4
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8093525179856115
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-weldclassifyv4

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5265
- Accuracy: 0.8094

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 13
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 1.1126        | 0.6410  | 100  | 1.0171          | 0.5504   |
| 0.8229        | 1.2821  | 200  | 0.7307          | 0.6942   |
| 0.7224        | 1.9231  | 300  | 0.6399          | 0.7122   |
| 0.3909        | 2.5641  | 400  | 0.5400          | 0.7734   |
| 0.237         | 3.2051  | 500  | 0.6716          | 0.7626   |
| 0.4056        | 3.8462  | 600  | 0.5265          | 0.8094   |
| 0.1764        | 4.4872  | 700  | 0.9174          | 0.7446   |
| 0.0546        | 5.1282  | 800  | 0.6644          | 0.8237   |
| 0.0436        | 5.7692  | 900  | 0.6923          | 0.8345   |
| 0.0661        | 6.4103  | 1000 | 0.6784          | 0.8345   |
| 0.0167        | 7.0513  | 1100 | 0.7115          | 0.8309   |
| 0.0744        | 7.6923  | 1200 | 0.6341          | 0.8525   |
| 0.0047        | 8.3333  | 1300 | 0.6402          | 0.8597   |
| 0.0039        | 8.9744  | 1400 | 0.5958          | 0.8849   |
| 0.0029        | 9.6154  | 1500 | 0.6158          | 0.8885   |
| 0.0027        | 10.2564 | 1600 | 0.6189          | 0.8885   |
| 0.0025        | 10.8974 | 1700 | 0.6309          | 0.8885   |
| 0.0024        | 11.5385 | 1800 | 0.6356          | 0.8885   |
| 0.0023        | 12.1795 | 1900 | 0.6382          | 0.8885   |
| 0.0023        | 12.8205 | 2000 | 0.6399          | 0.8885   |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1