File size: 20,223 Bytes
2bc6870 4659656 54f455e 2bc6870 53ad6d9 d6eba47 8a82e17 bff874d 6b6ec78 ea35c7a 695c18a 81555c7 1debcdd 2f03e73 47eda48 22aea34 72ee4d4 8cd99b6 414d598 b416c35 deacb04 608d4dd fa377d2 37ebf72 6304609 41c2c48 e947221 7e96d8d 6202a72 26fc5e4 da6c6da e213a21 b437ee2 4184a67 8a14282 7087cca e8601da 2c71f1c 3a57baa 40cdc38 dbc244a 24449a8 8a6e38f 44af771 f47d714 7a2570a f21c61a 4e29aef cddc347 92e6692 39890a5 ef178e0 2f1725c 0a9a238 9a4231c f6fb138 46118f3 0970377 3e4f7d9 81b73d1 140ca33 ec86b04 c0ae2ee b773d47 f381da1 c5e3681 ed81298 a184e90 0493f13 8c19c14 fea11bf 15312f9 d1150f8 8b95b24 57f2436 856407b a3ccac9 b081988 2c14a9c a8bacfb a45d2d0 56b8db3 501f2c2 d6eec5d 8a7be0d 79016fb b462d5b 7e2acb0 07a2804 92f313d 31f5125 c4519c5 cecd273 0498caf 3ed0ca4 911ed44 180fc71 b182b10 4892895 480ba55 873aa27 54b94b0 e4f29cc 3fd0a95 fa7e060 eda5439 a149e87 89ccb2f da70330 bb2ed78 48dd0c0 17ac284 47e8862 7060013 c4c165f 0218504 db09af3 f463a2d c5b9d28 b611d45 a097edd 8423f8a 632d6bb a206ac9 07f5204 27ba289 fef2214 2ac8d53 8365d1e 5754648 d1c64d2 7a551f5 cfbc33e bf13a11 349119c 3645f22 acc3e67 a477a6e ebd3445 5962e38 58f6f85 d73623d 3fd7a64 829c5a8 789fa85 7efe436 975137e 32a1197 38b423c 1838e98 191b371 d8ceec1 8dc8c41 af2e5fe 6899740 334c689 cc608da 5ace5c0 a6419a0 ff4c56e a214d20 fe57908 bcfadde a0597ba d4ada39 74a9bed c4fb21f 3ca2291 70d36ab 7dc78f5 94ae0fd c15b342 2065c52 a295c51 0288302 96f3510 96c7c70 73c26f2 cc19944 5861f4a c89a276 bd16236 2a11383 a02420a 11e13a3 e3b30ac e93cd07 50c86bb 2faded6 b2f57fd 390d368 7bf16ff d66f452 c137cdc 27cd3d1 10f04f0 c40b861 f480acf a6e3f7d 381c399 2b6ccc1 60f74a2 6f372d8 fa7dd86 8c494d1 85179f1 ddfa081 35a708b 35f86e5 a0d4609 4dd25f0 2d41754 6eecd14 3640d64 18dd715 11bc0dc 8e1dfe1 494cc84 b44614d b37e207 5cc1c96 a09f36e 2ebc520 343aa1f a98db59 14c0748 efe0918 bd69aeb 5723a5d 8979f53 e5337f1 e8e81fc 24c845e 4659656 54f455e 2bc6870 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: tf-tpu/roberta-base-epochs-500-no-wd
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# tf-tpu/roberta-base-epochs-500-no-wd
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.8045
- Train Accuracy: 0.1195
- Validation Loss: 0.8350
- Validation Accuracy: 0.1187
- Epoch: 230
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 0.0001, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0001, 'decay_steps': 278825, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 14675, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.001}
- training_precision: mixed_bfloat16
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 8.3284 | 0.0211 | 7.1523 | 0.0266 | 0 |
| 6.3670 | 0.0318 | 5.7812 | 0.0342 | 1 |
| 5.6051 | 0.0380 | 5.4414 | 0.0420 | 2 |
| 5.3602 | 0.0433 | 5.2734 | 0.0432 | 3 |
| 5.2285 | 0.0444 | 5.1562 | 0.0442 | 4 |
| 5.1371 | 0.0446 | 5.1133 | 0.0436 | 5 |
| 5.0673 | 0.0446 | 5.0703 | 0.0442 | 6 |
| 5.0132 | 0.0447 | 4.9883 | 0.0442 | 7 |
| 4.9642 | 0.0448 | 4.9219 | 0.0441 | 8 |
| 4.9217 | 0.0448 | 4.9258 | 0.0440 | 9 |
| 4.8871 | 0.0448 | 4.8867 | 0.0439 | 10 |
| 4.8548 | 0.0449 | 4.8672 | 0.0439 | 11 |
| 4.8277 | 0.0449 | 4.8047 | 0.0445 | 12 |
| 4.8033 | 0.0449 | 4.8477 | 0.0437 | 13 |
| 4.7807 | 0.0449 | 4.7617 | 0.0439 | 14 |
| 4.7592 | 0.0449 | 4.7773 | 0.0437 | 15 |
| 4.7388 | 0.0449 | 4.7539 | 0.0441 | 16 |
| 4.7225 | 0.0449 | 4.7266 | 0.0439 | 17 |
| 4.7052 | 0.0449 | 4.6914 | 0.0450 | 18 |
| 4.6917 | 0.0449 | 4.7188 | 0.0444 | 19 |
| 4.6789 | 0.0449 | 4.6914 | 0.0444 | 20 |
| 4.6689 | 0.0449 | 4.7031 | 0.0439 | 21 |
| 4.6570 | 0.0449 | 4.7031 | 0.0437 | 22 |
| 4.6486 | 0.0450 | 4.6758 | 0.0446 | 23 |
| 4.6393 | 0.0449 | 4.6914 | 0.0441 | 24 |
| 4.5898 | 0.0449 | 4.4688 | 0.0452 | 25 |
| 4.3024 | 0.0472 | 3.8730 | 0.0551 | 26 |
| 3.1689 | 0.0693 | 2.4375 | 0.0835 | 27 |
| 2.3780 | 0.0844 | 2.0498 | 0.0922 | 28 |
| 2.0789 | 0.0907 | 1.8604 | 0.0958 | 29 |
| 1.9204 | 0.0940 | 1.7549 | 0.0982 | 30 |
| 1.8162 | 0.0961 | 1.6836 | 0.0983 | 31 |
| 1.7370 | 0.0978 | 1.5869 | 0.1014 | 32 |
| 1.6723 | 0.0991 | 1.5381 | 0.1029 | 33 |
| 1.6215 | 0.1002 | 1.5283 | 0.1015 | 34 |
| 1.5753 | 0.1012 | 1.4736 | 0.1037 | 35 |
| 1.5295 | 0.1022 | 1.4238 | 0.1052 | 36 |
| 1.4944 | 0.1030 | 1.4141 | 0.1059 | 37 |
| 1.4631 | 0.1037 | 1.3721 | 0.1053 | 38 |
| 1.4363 | 0.1043 | 1.3467 | 0.1060 | 39 |
| 1.4098 | 0.1049 | 1.3213 | 0.1076 | 40 |
| 1.3867 | 0.1054 | 1.3018 | 0.1071 | 41 |
| 1.3658 | 0.1058 | 1.2832 | 0.1083 | 42 |
| 1.3469 | 0.1063 | 1.2637 | 0.1081 | 43 |
| 1.3288 | 0.1067 | 1.2598 | 0.1082 | 44 |
| 1.3111 | 0.1071 | 1.2334 | 0.1096 | 45 |
| 1.2962 | 0.1075 | 1.2490 | 0.1084 | 46 |
| 1.2816 | 0.1078 | 1.2168 | 0.1093 | 47 |
| 1.2672 | 0.1081 | 1.2070 | 0.1090 | 48 |
| 1.2537 | 0.1084 | 1.1680 | 0.1106 | 49 |
| 1.2411 | 0.1087 | 1.1904 | 0.1094 | 50 |
| 1.2285 | 0.1090 | 1.1709 | 0.1103 | 51 |
| 1.2180 | 0.1093 | 1.1602 | 0.1122 | 52 |
| 1.2075 | 0.1095 | 1.1396 | 0.1117 | 53 |
| 1.1973 | 0.1098 | 1.1191 | 0.1124 | 54 |
| 1.1876 | 0.1100 | 1.1260 | 0.1123 | 55 |
| 1.1782 | 0.1102 | 1.1289 | 0.1111 | 56 |
| 1.1698 | 0.1104 | 1.1211 | 0.1117 | 57 |
| 1.1596 | 0.1106 | 1.0977 | 0.1125 | 58 |
| 1.1530 | 0.1108 | 1.1172 | 0.1118 | 59 |
| 1.1462 | 0.1110 | 1.0703 | 0.1126 | 60 |
| 1.1370 | 0.1112 | 1.0830 | 0.1140 | 61 |
| 1.1309 | 0.1113 | 1.0762 | 0.1119 | 62 |
| 1.1234 | 0.1115 | 1.0625 | 0.1137 | 63 |
| 1.1162 | 0.1117 | 1.0781 | 0.1127 | 64 |
| 1.1114 | 0.1118 | 1.0474 | 0.1138 | 65 |
| 1.1036 | 0.1120 | 1.0703 | 0.1134 | 66 |
| 1.0984 | 0.1121 | 1.0366 | 0.1139 | 67 |
| 1.0931 | 0.1122 | 1.0513 | 0.1134 | 68 |
| 1.0860 | 0.1124 | 1.0264 | 0.1137 | 69 |
| 1.0807 | 0.1126 | 1.0215 | 0.1148 | 70 |
| 1.0758 | 0.1127 | 1.0269 | 0.1143 | 71 |
| 1.0704 | 0.1129 | 1.0356 | 0.1141 | 72 |
| 1.0656 | 0.1129 | 1.0195 | 0.1144 | 73 |
| 1.0607 | 0.1131 | 1.0093 | 0.1146 | 74 |
| 1.0559 | 0.1132 | 0.9956 | 0.1155 | 75 |
| 1.0517 | 0.1133 | 0.9995 | 0.1139 | 76 |
| 1.0462 | 0.1134 | 0.9839 | 0.1151 | 77 |
| 1.0422 | 0.1135 | 0.9868 | 0.1153 | 78 |
| 1.0372 | 0.1137 | 0.9995 | 0.1151 | 79 |
| 1.0340 | 0.1137 | 1.0059 | 0.1153 | 80 |
| 1.0296 | 0.1138 | 0.9961 | 0.1152 | 81 |
| 1.0272 | 0.1138 | 1.0132 | 0.1138 | 82 |
| 1.0211 | 0.1140 | 0.9575 | 0.1150 | 83 |
| 1.0182 | 0.1141 | 0.9868 | 0.1150 | 84 |
| 1.0146 | 0.1142 | 0.9678 | 0.1164 | 85 |
| 1.0111 | 0.1143 | 0.9839 | 0.1161 | 86 |
| 1.0083 | 0.1144 | 0.9722 | 0.1162 | 87 |
| 1.0039 | 0.1144 | 0.9619 | 0.1167 | 88 |
| 1.0017 | 0.1145 | 0.9575 | 0.1151 | 89 |
| 0.9973 | 0.1146 | 0.9624 | 0.1149 | 90 |
| 0.9947 | 0.1147 | 0.9570 | 0.1157 | 91 |
| 0.9921 | 0.1148 | 0.9360 | 0.1166 | 92 |
| 0.9884 | 0.1149 | 0.9546 | 0.1156 | 93 |
| 0.9851 | 0.1149 | 0.9536 | 0.1149 | 94 |
| 0.9829 | 0.1150 | 0.9575 | 0.1163 | 95 |
| 0.9795 | 0.1151 | 0.9561 | 0.1156 | 96 |
| 0.9773 | 0.1151 | 0.9438 | 0.1163 | 97 |
| 0.9740 | 0.1152 | 0.9512 | 0.1169 | 98 |
| 0.9712 | 0.1153 | 0.9375 | 0.1159 | 99 |
| 0.9678 | 0.1154 | 0.9453 | 0.1166 | 100 |
| 0.9660 | 0.1154 | 0.9507 | 0.1169 | 101 |
| 0.9636 | 0.1155 | 0.9507 | 0.1161 | 102 |
| 0.9609 | 0.1155 | 0.9727 | 0.1164 | 103 |
| 0.9589 | 0.1156 | 0.9395 | 0.1176 | 104 |
| 0.9561 | 0.1157 | 0.9346 | 0.1173 | 105 |
| 0.9537 | 0.1157 | 0.9331 | 0.1168 | 106 |
| 0.9515 | 0.1158 | 0.9434 | 0.1161 | 107 |
| 0.9488 | 0.1158 | 0.9131 | 0.1176 | 108 |
| 0.9471 | 0.1159 | 0.9360 | 0.1174 | 109 |
| 0.9449 | 0.1159 | 0.9175 | 0.1164 | 110 |
| 0.9422 | 0.1160 | 0.9121 | 0.1167 | 111 |
| 0.9412 | 0.1160 | 0.8970 | 0.1165 | 112 |
| 0.9379 | 0.1161 | 0.9111 | 0.1175 | 113 |
| 0.9362 | 0.1161 | 0.9048 | 0.1176 | 114 |
| 0.9345 | 0.1162 | 0.9082 | 0.1169 | 115 |
| 0.9317 | 0.1163 | 0.9277 | 0.1169 | 116 |
| 0.9295 | 0.1164 | 0.9292 | 0.1169 | 117 |
| 0.9287 | 0.1163 | 0.9243 | 0.1169 | 118 |
| 0.9266 | 0.1163 | 0.8892 | 0.1170 | 119 |
| 0.9233 | 0.1165 | 0.9058 | 0.1174 | 120 |
| 0.9221 | 0.1165 | 0.9106 | 0.1175 | 121 |
| 0.9205 | 0.1166 | 0.8979 | 0.1173 | 122 |
| 0.9181 | 0.1167 | 0.8989 | 0.1174 | 123 |
| 0.9180 | 0.1166 | 0.9053 | 0.1172 | 124 |
| 0.9158 | 0.1167 | 0.8877 | 0.1176 | 125 |
| 0.9135 | 0.1168 | 0.9160 | 0.1169 | 126 |
| 0.9116 | 0.1167 | 0.8940 | 0.1180 | 127 |
| 0.9095 | 0.1168 | 0.8945 | 0.1173 | 128 |
| 0.9081 | 0.1168 | 0.9126 | 0.1166 | 129 |
| 0.9064 | 0.1169 | 0.8872 | 0.1177 | 130 |
| 0.9053 | 0.1169 | 0.9175 | 0.1172 | 131 |
| 0.9035 | 0.1170 | 0.8989 | 0.1180 | 132 |
| 0.9023 | 0.1170 | 0.8965 | 0.1179 | 133 |
| 0.8999 | 0.1170 | 0.8979 | 0.1181 | 134 |
| 0.8981 | 0.1171 | 0.8799 | 0.1186 | 135 |
| 0.8976 | 0.1171 | 0.8984 | 0.1174 | 136 |
| 0.8957 | 0.1172 | 0.8857 | 0.1181 | 137 |
| 0.8948 | 0.1172 | 0.9019 | 0.1172 | 138 |
| 0.8929 | 0.1172 | 0.8804 | 0.1180 | 139 |
| 0.8915 | 0.1173 | 0.8848 | 0.1183 | 140 |
| 0.8898 | 0.1173 | 0.8911 | 0.1177 | 141 |
| 0.8894 | 0.1173 | 0.9033 | 0.1173 | 142 |
| 0.8869 | 0.1174 | 0.8853 | 0.1184 | 143 |
| 0.8863 | 0.1174 | 0.8921 | 0.1184 | 144 |
| 0.8848 | 0.1175 | 0.8848 | 0.1177 | 145 |
| 0.8838 | 0.1175 | 0.8896 | 0.1177 | 146 |
| 0.8822 | 0.1175 | 0.8945 | 0.1181 | 147 |
| 0.8804 | 0.1176 | 0.8843 | 0.1177 | 148 |
| 0.8794 | 0.1175 | 0.8774 | 0.1181 | 149 |
| 0.8780 | 0.1176 | 0.875 | 0.1178 | 150 |
| 0.8756 | 0.1176 | 0.8862 | 0.1170 | 151 |
| 0.8747 | 0.1177 | 0.8730 | 0.1178 | 152 |
| 0.8737 | 0.1177 | 0.8696 | 0.1195 | 153 |
| 0.8736 | 0.1177 | 0.8726 | 0.1184 | 154 |
| 0.8716 | 0.1178 | 0.8647 | 0.1186 | 155 |
| 0.8705 | 0.1178 | 0.8804 | 0.1179 | 156 |
| 0.8695 | 0.1178 | 0.8652 | 0.1190 | 157 |
| 0.8675 | 0.1179 | 0.8804 | 0.1197 | 158 |
| 0.8670 | 0.1179 | 0.8462 | 0.1192 | 159 |
| 0.8656 | 0.1180 | 0.8594 | 0.1188 | 160 |
| 0.8649 | 0.1180 | 0.8535 | 0.1188 | 161 |
| 0.8633 | 0.1181 | 0.8555 | 0.1185 | 162 |
| 0.8622 | 0.1180 | 0.8633 | 0.1173 | 163 |
| 0.8603 | 0.1181 | 0.8667 | 0.1177 | 164 |
| 0.8598 | 0.1181 | 0.8813 | 0.1185 | 165 |
| 0.8591 | 0.1181 | 0.8862 | 0.1176 | 166 |
| 0.8580 | 0.1181 | 0.8853 | 0.1177 | 167 |
| 0.8573 | 0.1181 | 0.8691 | 0.1181 | 168 |
| 0.8558 | 0.1182 | 0.8481 | 0.1176 | 169 |
| 0.8541 | 0.1182 | 0.8652 | 0.1187 | 170 |
| 0.8541 | 0.1183 | 0.8477 | 0.1198 | 171 |
| 0.8522 | 0.1183 | 0.8721 | 0.1190 | 172 |
| 0.8516 | 0.1183 | 0.8965 | 0.1173 | 173 |
| 0.8506 | 0.1183 | 0.8574 | 0.1173 | 174 |
| 0.8496 | 0.1183 | 0.8452 | 0.1188 | 175 |
| 0.8487 | 0.1184 | 0.8545 | 0.1183 | 176 |
| 0.8478 | 0.1184 | 0.8594 | 0.1191 | 177 |
| 0.8466 | 0.1184 | 0.8608 | 0.1187 | 178 |
| 0.8456 | 0.1184 | 0.8472 | 0.1186 | 179 |
| 0.8451 | 0.1185 | 0.8672 | 0.1178 | 180 |
| 0.8429 | 0.1185 | 0.8364 | 0.1196 | 181 |
| 0.8420 | 0.1185 | 0.8525 | 0.1187 | 182 |
| 0.8419 | 0.1186 | 0.8525 | 0.1196 | 183 |
| 0.8406 | 0.1186 | 0.8521 | 0.1193 | 184 |
| 0.8391 | 0.1186 | 0.8560 | 0.1188 | 185 |
| 0.8396 | 0.1186 | 0.8413 | 0.1188 | 186 |
| 0.8378 | 0.1186 | 0.8628 | 0.1185 | 187 |
| 0.8374 | 0.1186 | 0.8374 | 0.1195 | 188 |
| 0.8364 | 0.1187 | 0.8691 | 0.1189 | 189 |
| 0.8348 | 0.1187 | 0.8457 | 0.1196 | 190 |
| 0.8354 | 0.1187 | 0.8286 | 0.1191 | 191 |
| 0.8334 | 0.1187 | 0.8486 | 0.1187 | 192 |
| 0.8325 | 0.1188 | 0.8535 | 0.1182 | 193 |
| 0.8322 | 0.1188 | 0.8574 | 0.1199 | 194 |
| 0.8314 | 0.1188 | 0.8472 | 0.1202 | 195 |
| 0.8307 | 0.1188 | 0.8584 | 0.1186 | 196 |
| 0.8294 | 0.1189 | 0.8345 | 0.1197 | 197 |
| 0.8285 | 0.1189 | 0.8491 | 0.1181 | 198 |
| 0.8275 | 0.1189 | 0.8472 | 0.1193 | 199 |
| 0.8265 | 0.1189 | 0.8521 | 0.1185 | 200 |
| 0.8262 | 0.1190 | 0.8501 | 0.1195 | 201 |
| 0.8247 | 0.1190 | 0.8491 | 0.1194 | 202 |
| 0.8245 | 0.1190 | 0.8389 | 0.1191 | 203 |
| 0.8237 | 0.1190 | 0.8491 | 0.1184 | 204 |
| 0.8229 | 0.1190 | 0.8525 | 0.1193 | 205 |
| 0.8215 | 0.1190 | 0.8345 | 0.1199 | 206 |
| 0.8213 | 0.1190 | 0.8511 | 0.1206 | 207 |
| 0.8204 | 0.1191 | 0.8296 | 0.1195 | 208 |
| 0.8193 | 0.1192 | 0.8516 | 0.1183 | 209 |
| 0.8195 | 0.1191 | 0.8672 | 0.1181 | 210 |
| 0.8188 | 0.1191 | 0.8267 | 0.1197 | 211 |
| 0.8177 | 0.1192 | 0.8408 | 0.1185 | 212 |
| 0.8167 | 0.1192 | 0.8447 | 0.1191 | 213 |
| 0.8153 | 0.1192 | 0.8374 | 0.1191 | 214 |
| 0.8158 | 0.1192 | 0.8438 | 0.1198 | 215 |
| 0.8149 | 0.1192 | 0.8286 | 0.1191 | 216 |
| 0.8141 | 0.1193 | 0.8389 | 0.1202 | 217 |
| 0.8133 | 0.1192 | 0.8491 | 0.1202 | 218 |
| 0.8127 | 0.1193 | 0.8730 | 0.1185 | 219 |
| 0.8118 | 0.1193 | 0.8198 | 0.1183 | 220 |
| 0.8115 | 0.1193 | 0.8164 | 0.1200 | 221 |
| 0.8095 | 0.1194 | 0.8340 | 0.1195 | 222 |
| 0.8090 | 0.1194 | 0.8071 | 0.1208 | 223 |
| 0.8089 | 0.1194 | 0.8101 | 0.1195 | 224 |
| 0.8081 | 0.1194 | 0.8311 | 0.1184 | 225 |
| 0.8081 | 0.1194 | 0.8413 | 0.1198 | 226 |
| 0.8065 | 0.1195 | 0.8379 | 0.1202 | 227 |
| 0.8064 | 0.1194 | 0.8398 | 0.1196 | 228 |
| 0.8045 | 0.1195 | 0.8159 | 0.1199 | 229 |
| 0.8045 | 0.1195 | 0.8350 | 0.1187 | 230 |
### Framework versions
- Transformers 4.27.0.dev0
- TensorFlow 2.9.1
- Tokenizers 0.13.2
|