Fox-1-1.6B / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
cf3bace verified
|
raw
history blame
5.18 kB
metadata
language:
  - en
license: apache-2.0
pipeline_tag: text-generation
model-index:
  - name: Fox-1-1.6B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 27.66
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tensoropera/Fox-1-1.6B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 7.4
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tensoropera/Fox-1-1.6B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 1.28
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tensoropera/Fox-1-1.6B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 1.79
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tensoropera/Fox-1-1.6B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 3.87
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tensoropera/Fox-1-1.6B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 4.13
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tensoropera/Fox-1-1.6B
          name: Open LLM Leaderboard

Model Card for Fox-1-1.6B

This model is a base pretrained model which requires further finetuning for most use cases. For a more interactive experience, we recommend tensoropera/Fox-1-1.6B-Instruct-v0.1, the instruction-tuned version of Fox-1.

Fox-1 is a decoder-only transformer-based small language model (SLM) with 1.6B total parameters developed by TensorOpera AI. The model was trained with a 3-stage data curriculum on 3 trillion tokens of text and code data in 8K sequence length. Fox-1 uses Grouped Query Attention (GQA) with 4 key-value heads and 16 attention heads for faster inference.

For the full details of this model please read our release blog post.

Benchmarks

We evaluated Fox-1 on ARC Challenge (25-shot), HellaSwag (10-shot), TruthfulQA (0-shot), MMLU (5-shot), Winogrande (5-shot), and GSM8k (5-shot). We follow the Open LLM Leaderboard's evaluation setup and report the average score of the 6 benchmarks. The model was evaluated on a machine with 8*H100 GPUs.

Fox-1-1.6B Qwen-1.5-1.8B Gemma-2B StableLM-2-1.6B OpenELM-1.1B
GSM8k 36.39% 34.04% 17.06% 17.74% 2.27%
MMLU 43.05% 47.15% 41.71% 39.16% 27.28%
ARC Challenge 41.21% 37.20% 49.23% 44.11% 36.26%
HellaSwag 62.82% 61.55% 71.60% 70.46% 65.23%
TruthfulQA 38.66% 39.37% 33.05% 38.77% 36.98%
Winogrande 60.62% 65.51% 65.51% 65.27% 61.64%
Average 47.13% 46.81% 46.36% 45.92% 38.28%

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 7.69
IFEval (0-Shot) 27.66
BBH (3-Shot) 7.40
MATH Lvl 5 (4-Shot) 1.28
GPQA (0-shot) 1.79
MuSR (0-shot) 3.87
MMLU-PRO (5-shot) 4.13