Edit model card

wav2vec2-xlsr-persian-50p

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6846
  • Wer: 0.4339

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 1.05 250 3.2104 1.0
3.2437 2.11 500 2.9131 1.0
3.2437 3.16 750 1.0335 0.7303
1.4382 4.22 1000 0.8335 0.6155
1.4382 5.27 1250 0.7640 0.5904
0.6923 6.33 1500 0.6923 0.5468
0.6923 7.38 1750 0.6627 0.5238
0.5137 8.44 2000 0.6606 0.5112
0.5137 9.49 2250 0.6600 0.5125
0.4258 10.55 2500 0.6337 0.4939
0.4258 11.6 2750 0.6454 0.4851
0.362 12.66 3000 0.6481 0.4793
0.362 13.71 3250 0.6487 0.4801
0.3179 14.77 3500 0.6602 0.4668
0.3179 15.82 3750 0.6757 0.4683
0.2861 16.88 4000 0.6544 0.4591
0.2861 17.93 4250 0.6659 0.4634
0.2529 18.99 4500 0.6311 0.4556
0.2529 20.04 4750 0.6574 0.4525
0.235 21.1 5000 0.7019 0.4462
0.235 22.15 5250 0.6783 0.4426
0.2203 23.21 5500 0.6789 0.4361
0.2203 24.26 5750 0.6779 0.4336
0.2014 25.32 6000 0.6805 0.4406
0.2014 26.37 6250 0.6918 0.4407
0.1957 27.43 6500 0.6919 0.4360
0.1957 28.48 6750 0.6795 0.4332
0.1837 29.53 7000 0.6846 0.4339

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.10.0+cu113
  • Datasets 1.18.3
  • Tokenizers 0.10.3
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.