Edit model card

results

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9905
  • Accuracy: 0.5067

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 132 0.6630 0.6267
No log 2.0 264 0.6697 0.6267
No log 3.0 396 0.6605 0.6267
0.6686 4.0 528 0.6797 0.6267
0.6686 5.0 660 0.6599 0.5733
0.6686 6.0 792 0.6702 0.58
0.6686 7.0 924 0.7593 0.5267
0.6278 8.0 1056 0.7622 0.6
0.6278 9.0 1188 0.8147 0.6067
0.6278 10.0 1320 1.2285 0.5733
0.6278 11.0 1452 1.2681 0.58
0.5453 12.0 1584 1.4571 0.5667
0.5453 13.0 1716 1.5210 0.5467
0.5453 14.0 1848 1.6548 0.5733
0.5453 15.0 1980 1.6931 0.5667
0.4703 16.0 2112 1.8606 0.5867
0.4703 17.0 2244 1.9779 0.56
0.4703 18.0 2376 2.3998 0.4933
0.3567 19.0 2508 2.2930 0.5
0.3567 20.0 2640 2.6606 0.4933
0.3567 21.0 2772 2.4945 0.4933
0.3567 22.0 2904 2.6740 0.5133
0.2371 23.0 3036 2.7472 0.5
0.2371 24.0 3168 2.7916 0.5
0.2371 25.0 3300 2.8399 0.5
0.2371 26.0 3432 2.8665 0.52
0.1688 27.0 3564 2.9246 0.5133
0.1688 28.0 3696 2.9675 0.5
0.1688 29.0 3828 2.9967 0.5067
0.1688 30.0 3960 2.9905 0.5067

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for zjun028/results

Finetuned
(6488)
this model