ast_6-finetuned-ICBHI
This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2034
- Accuracy: 0.6620
- Sensitivity: 0.4858
- Specificity: 0.8195
- Score: 0.6526
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Sensitivity | Specificity | Score |
---|---|---|---|---|---|---|---|
0.9212 | 1.0 | 258 | 1.0044 | 0.6 | 0.4850 | 0.7028 | 0.5939 |
0.8937 | 2.0 | 517 | 0.8603 | 0.6431 | 0.3791 | 0.8792 | 0.6292 |
0.6352 | 3.0 | 776 | 0.9617 | 0.6442 | 0.5303 | 0.7461 | 0.6382 |
0.1363 | 4.0 | 1035 | 1.2034 | 0.6620 | 0.4858 | 0.8195 | 0.6526 |
0.0806 | 4.99 | 1290 | 1.4452 | 0.6587 | 0.5288 | 0.7749 | 0.6518 |
Framework versions
- Transformers 4.30.0.dev0
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.